1.中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
2.中国科学院大学, 北京 100049
[ "李波(1994-), 男, 山西朔州人, 硕士研究生, 2017年于太原理工大学获得学士学位, 主要从事高功率半导体激光器机理分析方面的研究。E-mail:libo2017@opt.cn" ]
[ "王贞福(1982-), 男, 山东高密人, 博士, 副研究员, 2011年于中国科学院长春光学精密机械与物理研究所获得博士学位, 主要从事高功率、高效率半导体激光器方面的研究。E-mail:wzf2718@opt.ac.cn" ]
扫 描 看 全 文
李波, 王贞福, 仇伯仓, 等. 高功率半导体激光阵列的高温特性机理[J]. 发光学报, 2020,41(9):1158-1164.
Bo LI, Zhen-fu WANG, Bo-cang QIU, et al. Analysis on High Temperature Characteristic of High Power Semiconductor Laser Array[J]. Chinese Journal of Luminescence, 2020,41(9):1158-1164.
李波, 王贞福, 仇伯仓, 等. 高功率半导体激光阵列的高温特性机理[J]. 发光学报, 2020,41(9):1158-1164. DOI: 10.37188/fgxb20204109.1158.
Bo LI, Zhen-fu WANG, Bo-cang QIU, et al. Analysis on High Temperature Characteristic of High Power Semiconductor Laser Array[J]. Chinese Journal of Luminescence, 2020,41(9):1158-1164. DOI: 10.37188/fgxb20204109.1158.
高峰值功率半导体激光阵列在高温工作条件中的应用需求日益凸显,本文以微通道封装的高峰值功率960 nm半导体激光阵列为研究对象,通过精密控温系统测试了其在10~80℃范围内峰值功率、电光转换效率、工作电压和光谱等一系列光电特性,结合理论分析,给出不同温度下电光转化效率的能量损耗分布。结果表明,工作温度从10℃升高到80℃后,电光转化效率从63.95%下降到47.68%,其中载流子泄漏损耗占比从1.93%上升到14.85%,是导致电光转换效率下降的主要因素。该研究对高峰值功率半导体激光器阵列在高温应用和激光芯片设计方面具有重要的指导意义。
The demand for high peak power semiconductor laser arrays in high temperature working conditions is becoming more and more prominent. The high peak power 960 nm semiconductor laser arrays packaged by microchannel cooler were experimentally studied through the precision temperature control system. A series of output characteristics such as the peak power, power conversion efficiency, working voltage and spectrum are tested from 10℃ to 80℃, combined with theoretical analysis. The energy loss distribution of power conversion efficiency is given at different temperatures. The results show that the power conversion efficiency drops from 63.95% to 47.68% after the operating temperature increases from 10℃ to 80℃, and the proportion of carrier leakage losses increases from 1.93% to 14.85%, which is the main factor that causes the decline in the power conversion efficiency. This study has important guiding significance for high peak power semiconductor laser arrays in high temperature applications and laser chip design.
高功率半导体激光阵列高温微通道电光转化效率能量损耗分布
high-power semiconductor laser arrayhigh temperaturemicrochannelpower conversion efficiencyenergy loss distribution
陈良惠, 杨国文, 刘育衔.半导体激光器研究进展[J].中国激光, 2020, 47(5): 0500001-1-19.
CHEN L H, YANG G W, LIU Y X. Development of semiconductor laser[J].Chin. J. Lasers, 2020, 47(5):0500001-1-19. (in Chinese)
袁庆贺, 井红旗, 仲莉, 等.大功率半导体激光器封装热应力研究[J].中国激光, 2019, 46(10):1001009-1-6.
YUAN Q H, JING H Q, ZHONG L, et al.. Thermal stressin high-power semiconductor laser packaging[J].Chin. J. Lasers, 2019, 46(10):1001009-1-6. (in Chinese)
王立军, 宁永强, 秦莉, 等.大功率半导体激光器研究进展[J].发光学报, 2015, 36(1):1-19.
WANG L J, NING Y Q, QIN L, et al.. Development of high power diode laser[J].Chin. J. Lumin., 2015, 36(1):1-19. (in Chinese)
CRUMP P A, CRUM T R, DEVITO M A, et al.. High-efficiency high-power 808-nm laser array and stacked arrays optimized for elevated temperature operation[C].Proceedings of SPIE 5336, High-power Diode Laser Technology and Applications Ⅱ, San Jose CA, United States, 2004: 144-155.
SCHRÖDER D, SCHRÖDER M, WERNER E, et al.. Improved laser diode for high power and high temperature applications[C].Proceedings of SPIE 7198, High-power Diode Laser Technology and Applications Ⅷ, San Jose, California, United States, 2009: 1-8.
BACCHIN G, FILY A, QIU B,et al.. High temperature and high peak-power 808nm QCW bars and stacks[J].Proceedings of SPIE 7583, High-power Diode Laser Technology and Applications Ⅷ, San Francisco, California, United States, 2010:1-11.
KAUL T, ERBERT G, MAAßDORF A, et al.. Suppressed power saturation due to optimized optical confinement in 9xx nm high-power diode lasers that use extreme double asymmetric vertical designs[J].Semicond. Sci. Technol., 2018, 33(3):035005.
刘素平, 仲莉, 张海燕, 等. 259 W准连续无铝808 nm激光二极管线列阵[J].半导体学报, 2008, 29(12):2335-2339.
LIU S P, ZHONG L, ZHANG H Y, et al.. 259 W QCW Al-free 808 nm linear laser diode arrays[J].J. Semicond., 2008, 29(12):2335-2339. (in English
蒋锴, 李沛旭, 沈燕, 等. 76%光电转换效率梯度渐变折射率结构940 nm半导体激光器[J].中国激光, 2014, 41(4):0402003-1-4.
JIANG K, LI P X, SHEN Y, et al.. 76% Maximum wall plug efficiency of 940 nm laser diode with step graded index structure[J].Chin. J. Lasers, 2014, 41(4):0402003-1-4. (in English
王贞福, 杨国文, 吴建耀, 等.高功率、高效率808 nm半导体激光器阵列[J].物理学报, 2016, 65(16):164203-1-6.
WANG Z F, YANG G W, WU J Y, et al.. High-power, high-efficiency 808 nm laser diode array[J].Acta Phys. Sinica, 2016, 65(16):164203-1-6. (inChinese
WANG Z F, LI T, YANG G W, et al.. High power, high efficiency continuous-wave 808 nm laser diode arrays[J].Opt.Laser Technol., 2017, 97:297-301.
EPPERLEIN P W. Semiconductor Laser Engineering, Reliability and Diagnostics:A Practical Approach to High Power and Single Mode Devices [M]. New York:John Wiley & Sons Ltd, 2013:72-75.
宋云菲, 王贞福, 李特, 等. 808 nm半导体激光芯片电光转换效率的温度特性机理研究[J].物理学报, 2017, 66(10):104202-1-6.
SONG Y F, WANG Z F, LI T, et al.. Efficiency analysis of 808 nm laser diode array underdifferent operating temperatures[J].Acta Phys. Sinica, 2017, 66(10):104202-1-6. (in Chinese)
KANSKAR M, EARLES T, GOODNOUGH T, et al.. High-power conversion efficiency Al-free diode lasers for pumping high-power solid-state laser systems[C].Proceedings of SPIE5738, Novel In-plane Semiconductor Lasers Ⅳ, San Jose, California, United States, 2005: 47.
CRUMP P, GRIMSHAW M, WANG J, et al.. 85% power conversion efficiency 975 nm broad area diode lasers at -50 ℃, 76 % at 10 ℃[C].Proceedings of IEEE 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, Long Beach, CA, USA, 2006: 1-2.
YANSON D, LEVI M, SHAMAY M, et al.. Facet engineering of high power single emitters[C].Proceedings of SPIE 7918, High-power Diode Laser Technology and Applications Ⅸ, San Francisco, California, United States, 2011: 1-12.
0
浏览量
53
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构