1.长春理工大学 化学与环境工程学院, 吉林 长春 130022
2.中国科学院长春应用化学研究所 稀土资源利用国家重点实验室, 吉林 长春 130022
[ "李子娟(1994-), 女, 吉林松原人, 硕士, 2019年于长春理工大学获得硕士学位, 主要从事稀土发光材料与性能方面的研究。E-mail:1774090348@qq.com" ]
[ "闫景辉(1963-), 男, 吉林农安县人, 博士, 教授, 2007年于长春理工大学获得博士学位, 主要从事纳米材料及其功能化方面的研究。E-mail:yjh@cust.edu.cn" ]
[ "连洪洲(1976-), 男, 山东荣成人, 博士, 2005年于中国科学院长春应用化学研究所获得博士学位, 主要从事稀土发光材料的研究。E-mail:hzlian@ciac.ac.cn" ]
扫 描 看 全 文
李子娟, 安雪, 牛昊, 等. 高温溶剂热分解法合成NaYF4:Yb3+, Er3+纳米粒子及其光谱特性[J]. 发光学报, 2020,41(9):1128-1136.
Zi-juan LI, Xue AN, Hao NIU, et al. Synthesis and Spectral Properties of NaYF4: Yb3+, Er3+ Nanoparticles
李子娟, 安雪, 牛昊, 等. 高温溶剂热分解法合成NaYF4:Yb3+, Er3+纳米粒子及其光谱特性[J]. 发光学报, 2020,41(9):1128-1136. DOI: 10.37188/fgxb20204109.1128.
Zi-juan LI, Xue AN, Hao NIU, et al. Synthesis and Spectral Properties of NaYF4: Yb3+, Er3+ Nanoparticles
以稀土氯化物为反应前驱体,采用高温溶剂法合成单分散、形貌和尺寸均一的NaYF,4,:20% Yb,3+,,2% Er,3+,上转换发光纳米粒子。探讨了反应时间、温度以及油酸加入量对产物结构和光学性能的影响。通过XRD、SEM、EDS、XPS及光致发光等对产物性能进行表征。结果表明,样品与标准卡片匹配良好,为纯相,属六方晶系;所合成的纳米粒子形貌为六角盘状,对角线长度约为77 nm,厚度约为54 nm;在980 nm激光激发下,所合成纳米粒子在523 nm和542 nm左右的绿光区以及峰值位于656 nm左右的红光区均可观察到Er,3+,的特征发射峰,分别归属于,2,H,11/2,、,4,S,3/2,及,4,F,9/2,能级到,4,I,15/2,能级之间的跃迁,不论是红光还是绿光吸收均为双光子过程。
Mono-dispersed up-converting luminescent nanoparticles of NaYF,4,:20%Yb,3+, 2%Er,3+, with uniform size and morphology were prepared ,via, the thermolysis method using rare earth chloride as the precursor. The crystal structure, morphology, and upconversion properties of the samples were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), energy dispersive spectrometer(EDS), X-ray photoelectron spectroscopy(XPS) and photoluminescence spectrum. The results show that the samples belong to the hexagonal system(space group:,P,6) and therefore verifies the phase purity of the samples. The sample exhibits the morphology of hexagonal disc with a diagonal length of about 77 nm and a thickness of about 54 nm. Under the excitation of 980 nm laser, the samples exhibit characteristic emission of Er,3+, peaked at 523 nm(green), 542 nm(green) and 656 nm(red), which can be attributed to the transition from the level of ,2,H,11/2,4,S,3/2, and ,4,F,9/2, to the level of ,4,I,15/2, respectively. Both absorption of green and red were due to two-photon processes.
高温溶剂热分解法NaYF4:Yb3+ Er3+纳米粒子上转换发光单分散
thermolysis methodNaYF4:Yb3+ Er3+nanoparticlesup-conversion luminescencemonodisper
SIAL M A Z G, DIN M A U, WANG X. Multimetallic nanosheets: synthesis and applications in fuel cells[J].Chem. Soc. Rev., 2018, 47(16):6175-6200.
CLANCY A J, BAYAZIT M K, HODGE S A, et al.. Charged carbon nanomaterials:redox chemistries of fullerenes, carbon nanotubes, and graphenes[J].Chem. Rev., 2018, 118(16):7363-7408.
CHEN Y, FAN Z X, ZHANG Z C, et al.. Two-dimensional metal nanomaterials:synthesis, properties, and applications[J].Chem. Rev., 2018, 118(13):6409-6455.
MARKWALTER C F, KANTOR A G, MOORE C P, et al.. Inorganic complexes and metal-based nanomaterials for infectious disease diagnostics[J].Chem. Rev., 2019, 119(2):1456-1518.
相国涛, 刘小桐, 夏清, 等. β-NaYF4:Yb3+/Er3+@β-NaYF4:Yb3+的上转换发光特性[J].发光学报, 2020, 41(6):679-683.
XIANG G T, LIU X T, XIA Q, et al.. Upconversion luminescence properties of β-NaYF4:Yb3+/Er3+@β-NaYF4:Yb3+ [J].Chin. J. Lumin., 2020, 41(6):679-683. (in Chinese)
WANG X, ZHUANG J, PENG Q, et al.. Hydrothermal synthesis of rare-earth fluoride nanocrystals[J].Inorg. Chem., 2006, 45(17):6661-6665.
YAN Z G, YAN C H. Controlled synthesis of rare earth nanostructures[J].J. Mater. Chem., 2008, 18(42):5046-5059.
YANG J F, SONG L N, WANG X X, et al.. Facile synthesis and color-tunable properties of monodisperse β-NaYF4:Ln3+(Ln=Eu, Tb, Tm, Sm, Ho) microtubes[J].Dalton Trans., 2018, 47(4):1294-1302.
张鸣, 闫景辉, 石春山.稀土掺杂KMgF3光谱特性的研究[J].长春理工大学学报, 2005, 28(1):79-83.
ZHANG M, YAN J H, SHI C S. Study on properties of optical spectroscopy of RE-doped KMgF3 functional materials[J].J. Changchun Univ. Sci. Technol., 2005, 28(1):79-83. (in Chinese)
XIE S W, TONG C, TAN H H, et al.. Hydrothermal synthesis and inkjet printing of hexagonal-phase NaYF4:Ln3+ upconversion hollow microtubes for smart anti-counterfeiting encryption[J].Mater. Chem. Front., 2018, 2(11):1997-2005.
CHEN G Y, QIU H L, PRASAD P N, et al.. Upconversion nanoparticles:design, nanochemistry, and applications in theranostics[J].Chem. Rev., 2014, 114(10):5161-5214.
GAI S L, LI C X, YANG P P, et al.. Recent progress in rare earth micro/nanocrystals:soft chemical synthesis, luminescent properties, and biomedical applications[J].Chem. Rev., 2014, 114(4):2343-2389.
BOYER J C, VETRONE F, CUCCIA L A, et al.. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors[J].J. Am. Chem. Soc., 2006, 128(23):7444-7445.
ZI L, ZHANG D, DE G J H. Self-assembly NaGdF4 nanoparticles:phase controlled synthesis, morphology evolution, and upconversion luminescence properties[J].Mater. Res. Express, 2016, 3(2):025009-1-8.
SMITH B R, GAMBHIR S S. Nanomaterials for in vivo imaging[J].Chem. Rev., 2017, 117(3):901-986
LAURENCE T A, LIU Y, ZHANG M, et al.. Measuring activation and luminescence time scales of upconverting NaYF4:Yb, Er nanocrystals[J].J. Phys. Chem. C, 2018, 122(41):23780-23789.
QIU Z L, SHU J, TANG D P. NaYF4:Yb, Er upconversion nanotransducer with in situ fabrication of Ag2S for near-infrared light responsive photoelectrochemical biosensor[J].Anal. Chem., 2018, 90(20):12214-12220.
JANJUA R A, GAO C, DAI R C, et al.. Na+-driven nucleation of NaYF4:Yb, Er nanocrystals and effect of temperature on their structural transformations and luminescent properties[J].J. Phys. Chem. C, 2018, 122(40):23242-23250.
WIESHOLLER L M, GENSLEIN C, SCHROTER A, et al.. Plasmonic enhancement of NIR to UV upconversion by a nanoengineered interface consisting of NaYF4:Yb, Tm nanoparticles and a gold nanotriangle array for optical detection of Vitamin B12 in serum[J].Anal. Chem., 2018, 90(24):14247-14254.
LI C X, YANG J, QUAN Z W, et al.. Different microstructures of β-NaYF4 fabricated by hydrothermal process:effects of pH values and fluoride sources[J].Chem. Mater., 2007, 19(20):4933-4942.
MAI H X, ZHANG Y W, SI R, et al.. High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties[J].J. Am. Chem. Soc., 2006, 128(19):6426-6436.
LIU J, CHEN G Y, HAO S W, et al.. Sub-6 nm monodisperse hexagonal core/shell NaGdF4 nanocrystals with enhanced upconversion photoluminescence[J].Nanoscale, 2017, 9(1):91-98.
HUANG B R, BERGSTRAND J, DUAN S, et al.. Overtone vibrational transition-induced lanthanide excited-state quenching in Yb3+/Er3+-doped upconversion nanocrystals[J].ACS Nano, 2018, 12(11):10572-10575.
BALAJI R, KUMAR S, REDDY K L, et al.. Near-infrared driven photocatalytic performance of lanthanide-doped NaYF4@CdS core-shell nanostructures with enhanced upconversion properties[J].J. Alloys Compd., 2017, 724:481-491.
SIVAKUMAR S, VAN VEGGEL F C J M, MAY P S. Near-infrared(NIR) to red and green up-conversion emission from silica sol-gel thin films made with La0.45Yb0.50Er0.05F3 nanoparticles, hetero-looping-enhanced energy transfer(Hetero-LEET):a new up-conversion process[J].J. Am. Chem. Soc., 2007, 129(3):620-625.
0
浏览量
61
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构