浏览全部资源
扫码关注微信
1.中国科学院苏州纳米技术与纳米仿生研究所 印刷电子技术研究中心, 江苏 苏州 215123
2.上海科技大学 物质科学与技术学院, 上海 201210
[ "高朝(1992-), 男, 湖北黄冈人, 硕士研究生, 2013年于湖北工程学院获得学士学位, 主要从事OLED材料的合成以及器件等方面的研究。E-mail:zgao2018@sinano.ac.cn" ]
[ "苏文明(1978-), 男, 湖南邵东人, 博士, 研究员, 2007年于中国科学院长春光学精密机械与物理研究所获得博士学位, 主要从事印刷发光与显示等方面的研究E-mail:wmsu2008@sinano.ac.cn" ]
纸质出版日期:2020-9,
收稿日期:2020-6-18,
录用日期:2020-7-6
扫 描 看 全 文
高朝, 谢黎明, 苏文明, 等. 一种新型交联电子传输材料在OLED中的应用[J]. 发光学报, 2020,41(9):1093-1101.
Zhao GAO, Li-ming XIE, Wen-ming SU, et al. Application of A Novel Cross-linkable Electron Transport Material in OLED[J]. Chinese Journal of Luminescence, 2020,41(9):1093-1101.
高朝, 谢黎明, 苏文明, 等. 一种新型交联电子传输材料在OLED中的应用[J]. 发光学报, 2020,41(9):1093-1101. DOI: 10.37188/fgxb20204109.1093.
Zhao GAO, Li-ming XIE, Wen-ming SU, et al. Application of A Novel Cross-linkable Electron Transport Material in OLED[J]. Chinese Journal of Luminescence, 2020,41(9):1093-1101. DOI: 10.37188/fgxb20204109.1093.
设计并合成了一种新型的可交联电子传输材料TV-T2T。该材料经过热交联之后具有优异的抗溶剂特性,并且TV-T2T的LUMO能级为-3.5 eV,这将更有利于电子从ZnO层注入到发光层中。另外,溶液法制备的三层薄膜ZnO/TV-T2T/2,6-Dczppy:Ir(mppy)
3
,其粗糙度低至2.27 nm,优于未加入TV-T2T电子传输层的双层薄膜(2.37 nm),可以有效减少漏电流的产生。随后,将TV-T2T应用于三层溶液法制备的倒置有机发光二极管中,获得了5.1% EQE的器件性能,是不加TV-T2T的器件性能(EQE为3.0%)的1.7倍。
A new cross-linkable electron transport layer(ETL) material
2
4
6-tris(4'-vinyl-[1
1'-biphenyl]-3-yl)-1
3
5-triazine(TV-T2T) was designed and synthesized. The film formation of the cross-linkable material TV-T2T has the excellent solvent resistance. The lowest unoccupied molecular orbital(LUMO) level of TV-T2T is -3.5 eV
which could deliver efficient charge injection from the zinc oxide(ZnO) to the emission layer. In addition
the surface roughness of 2.27 nm in the film of triple-layer ZnO/TV-T2T/2
6-Dczppy:Ir(mppy)
3
is lower than that of the film without TV-T2T(2.39 nm)
resulting in a reduced leakage current. The solution-processed inverted OLED with ETL material TV-T2T
achieved an EQE of 5.1% compared to the 3.0% EQE of the device without TV-T2T layer
demonstrating an improvement of 1.7-fold for the inverted OLEDs.
交联材料电子传输层电子注入能力溶液法倒置OLED
cross-linkable materialelectron transport layerelectron injection propertysolution processinginverted organic light emitting diodes
TANG C W, VANSLYKE S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987, 51(12):913-915.
LEE C B, UDDIN A, HU X, et al.. Study of Alq3 thermal evaporation rate effects on the OLED[J]. Mater. Sci. Eng. B, 2004, 112(1):14-18.
LEE S, KOO H, CHO S. Mask-less patterning of organic light emitting diodes using electrospray and selective biasing on pixel electrodes[J]. Appl. Phys. Lett., 2015, 106(17):173303-1-4.
WANG B, WANG Z K, LIANG J, et al.. Flash-evaporated small molecule films toward low-cost and flexible organic light-emitting diodes[J]. J. Mater. Chem. C, 2017, 5(41):10721-10727.
YUN W M, JANG J, NAM S, et al.. Thermally evaporated SiO thin films as a versatile interlayer for plasma-based OLED passivation[J]. ACS Appl. Mater. Interfaces, 2012, 4(6):3247-3253.
CHEN J X, TAO W W, XIAO Y F, et al.. Efficient orange-red thermally activated delayed fluorescence emitters feasible for both thermal evaporation and solution process[J]. ACS Appl. Mater. Interfaces, 2019, 11(32):29086-29093.
贾克辉, 徐颖, 高劲松, 等.等离子辅助镀膜技术[J].发光学报, 2002, 23(6):623-626.
JIA K H, XU Y, GAO J S, et al.. Plasma ion assisted deposition for optical coating[J]. Chin. J. Lumin., 2002, 23(6):623-626. (in Chinese)
ECCHER J, ZAJACZKOWSKI W, FARIA G C, et al.. Thermal evaporation versus spin-coating:electrical performance in columnar liquid crystal OLEDs[J]. ACS Appl. Mater. Interfaces, 2015, 7(30):16374-16381.
HU Z, YIN Y, ALI M U, et al.. Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays[J]. Nanoscale, 2020, 12(3):2103-2110.
LIU X, YU Z, YU M J, et al.. Iridium(Ⅲ)-complexed polydendrimers for inkjet-printing OLEDs:the influence of solubilizing steric hindrance groups[J]. ACS Appl. Mater. Interfaces, 2019, 11(29):26174-26184.
HU Y X, LIN T, XIA X, et al.. Novel phosphorescent iridium(Ⅲ) emitters for both vacuum-deposition and inkjet-printing of OLEDs with exceptionally high efficiency[J]. J. Mater. Chem. C, 2019, 7(14):4178-4184.
WEI C T, ZHUANG J Y, ZHANG D Y, et al.. Pyridine-based electron-transport materials with high solubility, excellent film-forming ability, and wettability for inkjet-printed OLEDs[J]. ACS Appl. Mater. Interfaces, 2017, 9(44):38716-38727.
BAN X X, LIU Y, PAN J, et al.. Design of blue thermally activated delayed fluorescent emitter with efficient exciton gathering property for high-performance fully solution-processed hybrid white OLEDs[J]. ACS Appl. Mater. Interfaces, 2020, 12(1):1190-1200.
GODUMALA M, YOON J, JEONG C H, et al.. An excellent bipolar host material exhibiting EQE of 24.0% with small efficiency roll-off in solution-processable thermally activated delayed fluorescence OLEDs[J]. J. Mater. Chem. C, 2019, 7(44):13930-13938.
PETERS K, RAUPP S, HUMMEL H, et al.. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling[J]. AIP Adv., 2016, 6(6):065108.
LIU Y, DUZHKO V V, PAGE Z A, et al.. Conjugated polymer zwitterions:efficient interlayer materials in organic electronics[J]. Acc Chem. Res., 2016, 49(11):2478-2488.
PENG F, XU J, ZHANG Y H, et al.. Ether-soluble hole-transporting polymers based on triphenylamine/phenothiazine moieties with shallow HOMO levels[J]. Polym. Chem., 2019, 10(11):1367-1376.
TSAI C E, LIAO M H, CHEN Y L, et al.. Triarylamine-based crosslinked hole-transporting material with an ionic dopant for high-performance PEDOT:PSS-free polymer solar cells[J]. J. Mater. Chem. C, 2015, 3(24):6158-6165.
CHENG Y J, LIAO M H, SHIH H M, et al.. Exciplex electroluminescence induced by cross-linked hole-transporting materials for white light polymer light-emitting diodes[J]. Macromolecules, 2011, 44(15):5968-5976.
HUANG Q L, EVMENENKO G A, DUTTA P, et al.. Covalently bound hole-injecting nanostructures. Systematics of molecular architecture, thickness, saturation, and electron-blocking characteristics on organic light-emitting diode luminance, turn-on voltage, and quantum efficiency[J]. J. Am. Chem. Soc., 2005, 127(29):10227-10242.
BACHER E, BAYERL M, RUDATI P, et al.. Synthesis and characterization of photo-cross-linkable hole-conducting polymers[J]. Macromolecules, 2005, 38(5):1640-1647.
XIE L M, XIONG X Y, CHANG Q W, et al.. Inkjet-printed high-efficiency multilayer QLEDs based on a novel crosslinkable small-molecule hole transport material[J]. Small, 2019, 15(16):1900111-1-8.
EARMME T, AHMED E, JENEKHE S A. Solution-processed highly efficient blue phosphorescent polymer light-emitting diodes enabled by a new electron transport material[J]. Adv. Mater., 2010, 22(42):4744-4748.
YOOK K S, LEE J Y. Solution processed deep blue phosphorescent organic light-emitting diodes with over 20% external quantum efficiency[J]. Org. Electron., 2011, 12(10):1711-1715.
LEE C W, YOOK K S, LEE J Y. Synthesis and device application of hybrid host materials of carbazole and benzofuran for high efficiency solution processed blue phosphorescent organic light-emitting diodes[J]. Org. Electron., 2013, 14(3):1009-1014.
EARMME T, JENEKHE S A. High-performance multilayered phosphorescent OLEDs by solution-processed commercial electron-transport materials[J]. J. Mater. Chem., 2012, 22(11):4660-4668.
YAN X J, TIAN C Y, JIANG W, et al.. A scalable seamless full color PMOLED[J]. J. Soc. Inf. Display, 2014, 22(5):245-250.
WANG R, ZHANG D L, XIONG Y, et al.. TFT-directed electroplating of RGB luminescent films without a vacuum or mask toward a full-color AMOLED pixel matrix[J]. ACS Appl. Mater. Interfaces, 2018, 10(21):17519-17525.
SONG E, NAM H. Novel voltage programming n-channel TFT pixel circuit for low power and high performance AMOLED displays[J]. Displays, 2014, 35(3):118-125.
LIN C L, CHOU K W, CHANG F C, et al.. A novel 3-TFT voltage driving method of compensating VTH shift for a-Si:H TFT and OLED degradation for AMOLED[J]. Solid State Electron., 2011, 64(1):10-13.
WANG M Y, ZHOU L, YU M J, et al.. Amphiphilic conjugated molecules with multifunctional properties as efficient blue emitters and cathode interlayers for inkjet printed organic light-emitting diodes[J]. J. Mater. Chem. C, 2017, 5(28):7075-7083.
XU W D, LAI W Y, HU Q, et al.. A hydrophilic monodisperse conjugated starburst macromolecule with multidimensional topology as electron transport/injection layer for organic electronics[J]. Polym. Chem., 2014, 5(8):2942-2950.
CHEN Y H, LEI Z F, ZHANG X W, et al.. Efficient blue organic light-emitting devices based on solution-processed starburst macromolecular electron injection layer[J]. J. Lumin., 2016, 170:50-55.
XU W D, XIA R D, YE T L, et al.. Understanding the light soaking effects in inverted organic solar cells functionalized with conjugated Macroelectrolyte electron-collecting interlayers[J]. Adv. Sci., 2016, 3(2):1500245-1-7.
LIU X K, ZHENG C J, XIAO J, et al.. Novel bipolar host materials based on 1, 3, 5-triazine derivatives for highly efficient phosphorescent OLEDs with extremely low efficiency roll-off[J]. Phys. Chem. Chem. Phys., 2012, 14(41):14255-14261.
ZHAO B, MIAO Y Q, WANG Z Q, et al.. High efficiency and low roll-off green OLEDs with simple structure by utilizing thermally activated delayed fluorescence material as the universal host[J]. Nanophotonics, 2016, 6(5):1133-1140.
LI S W, YU C H, KO C L, et al.. Cyanopyrimidine-carbazole hybrid host materials for high-efficiency and low-efficiency roll-off TADF OLEDs[J]. ACS Appl. Mater. Interfaces, 2018, 10(15):12930-12936.
ABDURAHMAN A, CHEN Y X, AI X, et al.. A pure red luminescent β-carboline-substituted biphenylmethyl radical:photophysics, stability and OLEDs[J]. J. Mater. Chem. C, 2018, 6(42):11248-11254.
SUZUKI Y, ZHANG Q S, ADACHI C. A solution-processable host material of 1, 3-bis{3-[3-(9-carbazolyl)phenyl]-9-carbazolyl}benzene and its application in organic light-emitting diodes employing thermally activated delayed fluorescence[J]. J. Mater. Chem. C, 2015, 3(8):1700-1706.
CHAPRAN M, PANDER P, VASYLIEVA M,et al.. Realizing 20% external quantum efficiency in electroluminescence with efficient thermally activated delayed fluorescence from an exciplex[J]. ACS Appl. Mater. Interfaces, 2019, 11(14):13460-13471.
GOTTARDI S, BARBRY M, COEHOORN R, et al.. Efficiency loss processes in hyperfluorescent OLEDs:a kinetic Monte Carlo study[J]. Appl. Phys. Lett., 2019, 114(7):073301-1-5.
KUO H H, HSU L Y, TSO J Y, et al.. Blue-emitting bis-tridentate Ir(Ⅲ) phosphors:OLED performances vs. substituent effects[J]. J. Mater. Chem. C, 2018, 6(39):10486-10496.
MO H W, TSUCHIYA Y, GENG Y, et al.. Color tuning of avobenzone boron difluoride as an emitter to achieve full-color emission[J]. Adv. Funct. Mater., 2016, 26(37):6703-6710.
MÉHES G, GOUSHI K, POTSCAVAGE JR W J, et al.. Influence of host matrix on thermally-activated delayed fluorescence:effects on emission lifetime, photoluminescence quantum yield, and device performance[J]. Org. Electron., 2014, 15(9):2027-2037.
BEEK W J, WIENK M M, KEMERINK M, et al.. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells[J]. J. Phys. Chem. B, 2005, 109(19):9505-9516.
0
浏览量
173
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构