浏览全部资源
扫码关注微信
天津理工大学 理学院, 天津 300384
[ "许照锦(1978-), 男, 福建闽侯人, 硕士, 副教授, 2005年于南开大学获得硕士学位, 主要从事光谱学与应用的研究。E-mail:xuzhaojin1234@126.com" ]
[ "沈礼(1982-), 男, 湖北武汉人, 博士, 副教授, 2009年于中国科学院武汉物理与数学研究所获得博士学位, 主要从事光谱学与应用的研究。E-mail:shenli@tjut.edu.cn" ]
纸质出版日期:2020-8,
收稿日期:2020-5-6,
录用日期:2020-5-28
扫 描 看 全 文
许照锦, 张小虎, 张文纳, 等. Sm原子奇宇称Rydberg态光谱[J]. 发光学报, 2020,41(8):999-1008.
Zhao-jin XU, Xiao-hu ZHANG, Wen-na ZHANG, et al. Spectra of Odd-parity Rydberg States of Samarium Atom[J]. Chinese Journal of Luminescence, 2020,41(8):999-1008.
许照锦, 张小虎, 张文纳, 等. Sm原子奇宇称Rydberg态光谱[J]. 发光学报, 2020,41(8):999-1008. DOI: 10.37188/fgxb20204108.0999.
Zhao-jin XU, Xiao-hu ZHANG, Wen-na ZHANG, et al. Spectra of Odd-parity Rydberg States of Samarium Atom[J]. Chinese Journal of Luminescence, 2020,41(8):999-1008. DOI: 10.37188/fgxb20204108.0999.
结合共振激发和场电离探测技术,通过总角动量量子数0→1→0→1的激发路径,研究了第一电离阈附近的Sm原子奇宇称Rydberg态4f
6
6snp(
J
=1)。首先,在45 200~45 500 cm
-1
能量范围内共发现了94个奇宇称Rydberg能级。其次,通过对有效量子数和Rydberg能级结构特点的分析,将其中68个能级归属为3个束缚Rydberg系列,另外26个能级也给出了能级位置。然后,利用Rydberg-Ritz公式,对3个Rydberg系列分别进行了拟合,获得了Sm原子的电离阈为(45 519.61±0.79)cm
-1
。最后,采用6种偏振组合激发,由偏振选择定则,进一步验证了这些奇宇称Rydberg态总角动量量子数为1。这些结果首次证实了场电离探测技术对Sm原子高激发Rydberg态的适用性,并且通过对奇宇称Rydberg系列拟合得到的Sm原子电离阈与文献中通过偶宇称Rydberg系列获得的值(45 519.64±1.39)cm
-1
基本一致。
With resonance excitation and field ionization detection technology
the samarium atom odd-parity Rydberg states 4f
6
6snp(
J
=1) near the first ionization limit were studied
via
the excitation path of the total angular momentum quantum number 0→1→0→1. Firstly
a total of 94 odd-parity Rydberg levels were found in the energy range of 45 200~45 500 cm
-1
. Secondly
68 of these levels were assigned to three bound Rydberg series through the analysis of effective quantum number and structural characteristics of Rydberg energy levels
and energies of other 26 levels were given. Then
using the Rydberg-Ritz formula
the three series were fitted respectively
and the ionization limit of the samarium atom was (45 519.61±0.79) cm
-1
. Finally
six kinds of polarization combination were used to excite the samarium atom
and the polarization selection rule further verified that the total angular momentum quantum number of the Rydberg states was 1. The results confirm the applicability of the field ionization detection technology to the highly excited Rydberg states of the samarium atom. Meanwhile
ionization limit of the samarium atom obtained by fitting from the odd-parity Rydberg series is corresponded to the value (45 519.64±1.39) cm
-1
obtained by fitting from the even-parity Rydberg series from the reference.
Sm原子奇宇称Rydberg态场电离偏振光谱
samarium atomodd-parityRydberg statefield ionizationpolarization spectra
HOLLENSTEIN U, SEILER R, SCHMUTZ H, et al.. Selective field ionization of high Rydberg states:application to zero-kinetic-energy photoelectron spectroscopy[J].J. Chem. Phys., 2001, 115(12):5461-5469.
RATH A D, KUNDU S, RAY A K. Total angular momenta of high-lying odd levels of U I at ~4 eV using resonance ionization laser polarization spectroscopy[J].J. Quant. Spectrosc.Radiat. Transf., 2018, 206:328-332.
MATSUOKAL, HASEGAWA S. Two-color resonance ionization spectroscopy of highly excited titanium atoms[J].J. Opt. Soc. Am. B, 2007, 24(10):2562-2579.
WANG Q, WANG S, KANG Z H, et al.. Experimental branching fractions, transition probabilities and oscillator strengths of some levels in Ba I[J].J. Quant. Spectrosc.Radiat. Transf., 2017, 199:89-92.
FIELDS G, ZHANG X, DUNNING F B, et al.. Autoionization of very-high-n strontium Rydberg states[J].Phys. Rev. A, 2018, 97(1):013429-1-11.
KALAITZIS P, DANAKAS S, BORDAS C, et al.. Near-saddle-point-energy photoionization microscopy images of Stark states of the magnesium atom[J].Phys. Rev. A, 2019, 99(2):023428-1-8.
YANG H F, GAO W, QUAN W,et al.. Core effect on the diamagnetic spectrum of barium Rydberg states[J].Phys. Rev. A, 2012, 85(3):032508-1-6.
VAILLANT C L, JONES M P A, POTVLIEGE R M. Long-range Rydberg-Rydberg interactions in calcium, strontium and ytterbium[J].J. Phys. B:Atomic, Mol.Opt. Phys., 2012, 45(13):135004-1-12.
袁卫国, 戴长建, 靳嵩, 等. Ba原子6pnd(J=1, 3)自电离光谱的实验研究[J].物理学报, 2008, 57(7):4076-4082.
YUAN W G, DAI C J, JIN S, et al.. Study of Ba 6pnd (J=1, 3) autoionizing states[J].Acta Phys. Sinica, 2008, 57(7):4076-4082. (in Chinese)
ZHU S B, CHEN T, LI X L, et al.. Polarization spectroscopy of 1S0-1P1 transition of neutral ytterbium isotopes in hollow cathode lamp[J].J. Opt. Soc. Am. B, 2014, 31(10):2302-2309.
O'MALLEY S M, BECK D R. Three long-lived excited states of Tm-[J].Phys. Rev. A, 2004, 70(2):022502-1-9.
SHEN X P, WANG W L, ZHAI L H, et al.. New spectroscopic data on high-lying excited even-parity levels of atomic neodymium[J].Spectrochim. Acta Part B:At. Spectrosc., 2018, 145:96-98.
WENDT K, GOTTWALD T, MATTOLAT C, et al.. Ionization potentials of the lanthanides and actinides-towards atomic spectroscopy of super-heavy elements[J].Hyperfine Interact., 2014, 227(1):55-67.
STUDER D, HEINITZ S, HEINKE R, et al.. Atomic transitions and the first ionization potential of promethium determined by laser spectroscopy[J].Phys. Rev. A, 2019, 99(6):062513-1-8.
SHANG X, ZHOU C X, MA L, et al.. The determination of radiative lifetime for some Eu I levels by time-resolved laser-induced fluorescence spectroscopy[J].J. Quant. Spectrosc. Radiat. Transf., 2019, 224:103-106.
NIKI H, MOTOKI K, YASUI M, et al.. Selectivity and efficiency of laser isotope separation processes of gadolinium[J].J. Nucl. Sci. Technol., 2006, 43(4):427-431.
ANG'ONG'AJ, GADWAY B. Polarization spectroscopy of atomic erbium in a hollow cathode lamp[J].J. Phys. B:At., Mol. Opt. Phys., 2018, 51(4):045003-1-12.
CHHETRI P, ACKERMANN D, BACKE H, et al.. Precision measurement of the first ionization potential of nobelium[J].Phys. Rev. Lett., 2018, 120(26):263003-1-6.
GOMONAI A I, REMETA E Y. The effect of field strength on the resonance structure of three-photon ionization spectra of the samarium atom[J].Opt. Spectrosc., 2013, 114(3):329-336.
LAWLER J E, FITTANTE A J, DEN HARTOG E A. Atomic transition probabilities of neutral samarium[J].J. Phys. B:At., Mol. Opt. Phys., 2013, 46(21):215004-1-15.
SEEMA A U, MANDAL P K, SAHOO A C, et al.. Radiative lifetimes of even-parity high-lying levels of Sm I by delayed photoionization measurements[J].J. Quant. Spectrosc.Radiat. Transf., 2018, 216:1-5.
SAHOO A C, MANDAL P K, SHAH M L, et al.. Enhancement of photoionization by applying polarization-based common level excitation scheme for the selective photoionization of odd isotopes of samarium[J].J.Quant. Spectrosc.Radiat. Transf., 2019, 235:7-14.
JAYASEKHARAN T, RAZVI M A N, BHALE G L. Even-parity bound and autoionizing Rydberg series of the samarium atom[J].J. Phys. B:At., Mol. Opt. Phys., 2000, 33(16):3123-3136.
LI M, DAI C J, XIE J. Even-parity states of the Sm atom with stepwise excitation[J].Chin. Phys. B, 2011, 20(6):063204-1-9.
PULHANI A K, SHAH M L, DEV V, et al.. High-lying even-parity excited levels of atomic samarium[J].J. Opt. Soc. Am. B, 2005, 22(5):1117-1122.
QIN W J, DAI C J, XIAO Y, et al.. Experimental study of highly excited even-parity bound states of the Sm atom[J].Chin. Phys. B, 2009, 18(8):3384-3394.
ZHAO Y H, DAI C J, YE S W. Study on even-parity highly excited states of the Sm atom[J].J. Phys. B:At., Mol. Opt. Phys., 2011, 44(19):195001-1-7.
赵艳红, 戴长建, 野仕伟. Sm原子的偶宇称高激发态的光谱研究[J].物理学报, 2012, 61(3):033201-1-7.
ZHAO Y H, DAI C J, YE S W. Study on spectra of even-parity highly excited states of Sm atom[J].Acta Phys. Sinica, 2012, 61(3):033201-1-7. (in Chinese)
SEEMA A U, MANDAL P K, RATH A D, et al.. New even-parity high-lying levels of Sm I and measurement of isotope shifts by two-color resonance ionization mass spectrometry[J].J. Quant. Spectrosc. Radiat. Transf., 2014, 145:197-204.
SHAH M L, SAHOO A C, PULHANI A K, et al.. Investigations of high-lying even-parity energy levels of atomic samarium using simultaneous observation of two-color laser-induced fluorescence and photoionization signals[J].Eur. Phys. J. D, 2014, 68(8):2351-8.
JAYASEKHARAN T, RAZVI M A N, BHALE G L. Investigations of new high-lying even-parity energy levels of the samarium atom below its first ionization limit[J].J. Opt. Soc. Am. B, 2000, 17(9):1607-1615.
SCHMITT A, BUSHAW B A, WENDT K. Determination of the 154Sm ionization energy by high-precision laser spectroscopy[J].J. Phys. B:At., Mol. Opt. Phys., 2004, 37(8):1633-1644.
杨騄, 戴长建, 赵艳红.用光电离技术探测钐原子的奇宇称束缚激发态的光谱[J].物理学报, 2013, 62(5):53201-1-9.
YANG L, DAI C J, ZHAO Y H. Photoionization of odd-parity bound excited states of Sm atom[J].Acta Phys. Sinica, 2013, 62(5):53201-1-9. (in Chinese)
SAHOO A C, SHAH M L, MANDAL P K, et al.. Measurement of radiative lifetime in atomic samarium using simultaneous detection of laser-induced fluorescence and photoionization signals[J].Pramana, 2014, 82(2):403-408.
ZHENG X F, ZHOU X Y, CHENG Z Q, et al.. Photoionization cross section measurements of the excited states of cobalt in the near-threshold region[J].AIP Adv., 2014, 4(10):107120-1-10.
BOKHAN P A, FATEEV N V, KIM V A, et al.. Isotope-selective laser excitation and field ionization of the nF5/2 Rydberg states in a thallium beam[J].Laser Phys., 2013, 23(5):055702-1-9.
沈礼, 野仕伟, 戴长建.电场中Eu原子电离阈移动的实验研究[J].物理学报, 2012, 61(6):063301-1-5.
SHEN L, YE S W, DAI C J. Experiment study of ionization limit shift of europium atoms in electric fields[J].Acta Phys. Sinica, 2012, 61(6):063301-1-5. (in Chinese)
LOCHEAD G, BODDY D, SADLER D P, et al.. Number-resolved imaging of excited-state atoms using a scanning autoionization microscope[J].Phys. Rev. A, 2013, 87(5):053409-1-4.
MARTIN W C, ZALUBAS R, HAGAN L. Atomic Energy Levels:The Rare-Earth Elements, NSRDS-NBS 60[M]. Washington:National Bureau of Standards, 1978.
YI J H, LEE J, KONG H J. Autoionizing states of the ytterbium atom by three-photon polarization spectroscopy[J].Phys. Rev. A, 1995, 51(4):3053-3057.
0
浏览量
53
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构