浏览全部资源
扫码关注微信
1.曲阜师范大学物理工程学院 山东省激光偏光与信息技术重点实验室, 山东 曲阜 273165
2.中国科学院大学 信息功能材料国家重点实验室, 上海 200050
3.中国科学院 上海微系统与信息技术研究所, 上海 200050
[ "李金友(1993-), 男, 山东潍坊人, 硕士研究生, 2016年于曲阜师范大学获得学士学位, 主要从事半导体激光器方面的研究。E-mail:1603743020@qq.com" ]
[ "王海龙(1971-), 男, 山东莘县人, 博士, 教授, 博士研究生导师, 2000年于中国科学院半导体研究所获得博士学位, 主要从事半导体光电子学方面的研究。E-mail:hlwang@qfnu.edu.cn" ]
[ "龚谦(1971-), 男, 四川新都人, 博士, 研究员, 博士研究生导师, 1998年于中国科学院半导体研究所获得博士学位, 主要从事半导体材料生长与器件制备的研究。E-mail:qgong@mail.sim.ac.cn" ]
纸质出版日期:2020-8,
收稿日期:2020-4-20,
录用日期:2020-5-20
扫 描 看 全 文
李金友, 王海龙, 杨锦, 等. InGaAs/GaAs/InGaP量子阱激光器的温度电压特性[J]. 发光学报, 2020,41(8):971-976.
Jin-you LI, Hai-long WANG, Jin YANG, et al. Voltage-temperature Characteristics of InGaAs/GaAs/InGaP Quantum Well Laser[J]. Chinese Journal of Luminescence, 2020,41(8):971-976.
李金友, 王海龙, 杨锦, 等. InGaAs/GaAs/InGaP量子阱激光器的温度电压特性[J]. 发光学报, 2020,41(8):971-976. DOI: 10.37188/fgxb20204108.0971.
Jin-you LI, Hai-long WANG, Jin YANG, et al. Voltage-temperature Characteristics of InGaAs/GaAs/InGaP Quantum Well Laser[J]. Chinese Journal of Luminescence, 2020,41(8):971-976. DOI: 10.37188/fgxb20204108.0971.
研究了InGaAs/GaAs/InGaP量子阱激光器在不同温度下的电流-电压特性,并建立了一个理论模型进行描述。实验所用激光器腔长为0.3 mm,脊条宽度为3 μm。实验测量得到该激光器在15~100 K的电压温度系数(d
V
/d
T
)为7.87~8.32 mV/K,在100~300 K的电压温度系数为2.93~3.17 mV/K。由理论模型计算得到该激光器在15~100 K的电压温度系数为2.56~2.75 mV/K,在100~300 K的电压温度系数为3.91~4.15 mV/K。在100~300 K,实验测量与理论模型计算得出的电压温度系数接近,理论模型能较好地模拟激光器的温度电压特性;但在15~100 K相差较大,还需要进一步完善。
The current-voltage characteristics of an InGaAs/GaAs/InGaP quantum well laser at different temperatures have been investigated. A theoretical model has been developed to simulate the current-voltage characteristics of the laser. The length of the laser cavity utilized in the experiment is 0.3 mm
and the ridge width of the laser is 3 μm. Experimental voltage-temperature coefficients (d
V
/d
T
) of the laser are from 7.87 to 8.32 mV/K within 15-100 K
and are from 2.93 to 3.17 mV/K within 100-300 K. Theoretical voltage-temperature coefficients of the laser in the range of 15-100 K are 2.56 to 2.75 mV/K
and in the range of 100-300 K are 3.91 to 4.15 mV/K. Within 100-300 K
the theoretical voltage-temperature coefficients are close to the experimental coefficients. However
within 15-100 K
there are large differences between the theoretical coefficients and experimental ones
which need to be improved.
量子阱激光器InGaAs/GaAs/InGaP低温温度电压特性
quantum well laserInGaAs/GaAs/InGaPlow temperaturevoltage-temperature characteristics
ZILKIEA J, SRINIVASAN P, TRITA A, et al.. Multi-micron silicon photonics platform for highly manufacturable and versatile photonic integrated circuits[J].IEEE J. Sel. Top. Quant. Electron., 2019, 25(5):8200713-1-13.
WILLNERA E. Optical Fiber Telecommunications Ⅶ[M]. United States:Academic Press, 2019.
WANG F, JIA S H, WANG Y L, et al.. Recent developments in modulation spectroscopy for methane detection based on tunable diode laser[J].Appl. Sci., 2019, 9(14):2816-1-16.
RAMÍREZ-MARTÍNEZ N J, NÚÑEZ-VELÁZQUEZ M, UMNIKOV A A, et al.. Highly efficient thulium-doped high-power laser fibers fabricated by MCVD[J].Opt. Express, 2019, 27(1):196-201.
FATHOLOLOUMI S, DUPONT E, CHAN C W I, et al.. Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling[J].Opt. Express, 2012, 20(4):3866-3876.
龙睿, 王海龙, 成若海, 等.外腔反馈对量子点激光器输出特性的影响[J].发光学报, 2013, 34(4):474-479.
LONG R, WANG H L, CHENG R H, et al.. Influence of external cavity feedback on the output characteristics of quantum-dot lasers[J].Chin. J. Lumin., 2013, 34(4):474-479. (in Chinese)
QIAO Z L, LI X, WANG H, et al.. High-performance 1.06μm InGaAs/GaAs double-quantum-well semiconductor lasers with asymmetric heterostructure layers[J].Semicond. Sci. Technol., 2019, 34(5):055013-1-6.
ZHANG S B, ZHANG Z M, ZHUKOVSKYI M, et al.. Up-conversion emission thermometry for semiconductor laser cooling[J].J. Lumin., 2020, 222:117088.
BUTT N J, ROBERTS R A, PATNAIK S S. Laser diode optical output dependence on junction temperature for high-power laser systems[J].Opt. Laser Technol., 2020, 125:106019.
LINDEMANN M, JUNG N, STADLER P, et al.. Bias current and temperature dependence of polarization dynamics in spin-lasers with electrically tunable birefringence[J].AIP Adv., 2020, 10(3):035211-1-5.
SELETSKIY D V, MELGAARD S D, BIGOTTA S, et al.. Laser cooling of solids to cryogenic temperatures[J].Nat. Photonics, 2010, 4(3):161-164.
MELGAARD S D, ALBRECHT A R, HEHLEN M P, et al.. Solid-state optical refrigeration to sub-100 Kelvin regime[J].Sci. Rep., 2016, 6:20380-1-6.
IJICHI T, OHKUBO M, MATSUMOTO N, et al.. High power CW operation of aluminium-free InGaAs/GaAs/InGaP strained layer single quantum well ridge waveguide lasers[C].Proceedings of The 12th IEEE International Conference on Semiconductor Laser, Davos, Switzerland, 1990: 44-45.
AKHLESTINA S A, VASIL'EV V K, VIKHROVA O V, et al.. Controlling the wavelength of InGaAs/GaAs/InGaP lasers by ion implantation[J].Tech. Phys. Lett., 2010, 36(2):189-191.
ALEAHMAD P, BAKHSHI S, CHRISTODOULIDES D, et al.. Controllable red and blue shifting of InGaAsP quantum well bandgap energy for photonic device integration[J].Mater. Res. Express, 2015, 2(8):086302-1-5.
BIRYUKOV A A, ZVONKOV B N, NEKORKIN S M, et al.. Efficient generation of the first waveguide mode in the InGaAs/GaAs/InGaP heterolaser[J].Semiconductors, 2008, 42(3):354-357.
汤瑜, 曹春芳, 赵旭熠, 等. InGaAs/GaAs/InGaP量子阱激光器的激光单模特性研究[J].激光与光电子学进展, 2019, 56(13):131402-1-5.
TANG Y, CAO C F, ZHAO X Y, et al.. Laser single-mode characteristics of InGaAs/GaAs/InGaP quantum well lasers[J].Laser Optoelect. Prog., 2019, 56(13):131402-1-5. (in Chinese)
VAN ZEGHBROECK Z. Principles of Semiconductor Devices[M]. Colarado:Colarado University, 2004.
GOETZ K H, BIMBERG D, JVRGENSEN H, et al.. Optical and crystallographic properties and impurity incorporation of GaxIn1-xAs (0.44 < x < 0.49) grown by liquid phase epitaxy, vapor phase epitaxy, and metal organic chemical vapor deposition[J]. J. Appl. Phys., 1983, 54(8):4543-4552.
PAUL S, ROY J B, BASU P K. Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1-xAs[J].J. Appl. Phys., 1991, 69(2):827-829.
HANSEN G L, SCHMIT J L. Calculation of intrinsic carrier concentration in Hg1-xCdxTe[J].J. Appl. Phys., 1983, 54(3):1639-1640.
BEBB H B, RATLIFF C R. Numerical tabulation of integrals of Fermi functions using klim plim density of states[J].J. Appl. Phys., 1971, 42(8):3189-3194.
ROSBECK J P, HARPER M E. Doping and composition profiling in Hg1-xCdxTe by the graded capacitance-voltage method[J].J. Appl. Phys., 1991, 62(5):1717-1722.
XI Y, SCHUBERT E F. Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method[J].Appl. Phys. Lett., 2004, 85(12):2163-2165.
0
浏览量
114
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构