浏览全部资源
扫码关注微信
新疆农业大学 化学工程学院, 新疆 乌鲁木齐 830052
[ "王梅梅(1995-), 女, 新疆阿克苏人, 硕士研究生, 2017年于新疆农业大学获得学士学位, 主要从事碳纳米材料制备的研究。E-mail:wmmgt@qq.com" ]
[ "王欢欢(1984-), 男, 河南鹿邑人, 博士, 副教授, 硕士研究生导师, 2011年于中国科学院化学研究所获得博士学位, 主要从事光电功能材料的研究。E-mail:270005976@qq.com" ]
纸质出版日期:2020-8,
收稿日期:2020-4-1,
录用日期:2020-4-30
扫 描 看 全 文
王梅梅, 李莉, 陈琦栋, 等. 一锅煮串联合成方法在荧光碳点识别基团调控中的研究[J]. 发光学报, 2020,41(8):954-963.
Mei-mei WANG, Li LI, Qi-dong CHEN, et al. Investigation of Receptor Tailoring on Fluorescent Carbon Dots in One-pot Sequential Reactions[J]. Chinese Journal of Luminescence, 2020,41(8):954-963.
王梅梅, 李莉, 陈琦栋, 等. 一锅煮串联合成方法在荧光碳点识别基团调控中的研究[J]. 发光学报, 2020,41(8):954-963. DOI: 10.37188/fgxb20204108.0954.
Mei-mei WANG, Li LI, Qi-dong CHEN, et al. Investigation of Receptor Tailoring on Fluorescent Carbon Dots in One-pot Sequential Reactions[J]. Chinese Journal of Luminescence, 2020,41(8):954-963. DOI: 10.37188/fgxb20204108.0954.
二氨基脲嘧啶作为前驱体,经两步串联反应制备了两种具有不同配体结构的荧光碳点(CDs)。X射线光电子能谱与红外光谱分析揭示了两种碳点的配体结构特征。第一步所得的碳点(CD
HB
)具有尿嘧啶结构典型的氢键给体-NH和受体-C[FY=,1]O基团特征。发射光谱表现出具浓度依赖性的波长红移特点,同时该碳点对银和汞离子具有很强的亲和特性。第二阶段在碱性水解条件下,CD
HB
尿嘧啶配体易于转化为氨基和羧基等水溶性基团。该碳点(CD
ZW
)在水相中没有任何聚集行为,也没有发射波长浓度依赖特性。同时,作为荧光传感器,CD
ZW
显示对金属镍离子具有特异性荧光猝灭。总之,可调控的结构特征与传感特性验证了一锅串联反应合成碳点的有效性,为碳点的可控合成提供了新的合成范式。
A two-steps sequential reaction with diaminouracil as precursor was implemented to produce two types carbon dots(CDs) with distinctive ligands. The structural information of ligands on CDs in each step was obtained by XPS and FT-IR. It revealed that the carbon dots(denoted as CD
HB
) directly produced in first stage beard uracil moiety with typical hydrogen bond donor -NH and acceptor -C[FY=
1]O. CD
HB
displayed concentration dependent emission bathochromic shift. In addition
the dots' high affinity towards silver and mercury confirmed the presence of uracil receptor. In the second stage
it gradually converted to a form of dots with zwitterion symbol(denoted as CD
ZW
). Under alkaline condition
uracil receptor converted to amine and carboxyl moieties in CD
ZW
. The transformation of the receptor formed an aqueous solution of CD
ZW
without any aggregate behavior. And no evident peak-shifted fluorescence was observed. When used as a fluorescent indicator
the CD
ZW
displayed fluorescence turn-off upon the addition of nickel. Therefore
tailorable structures and binding properties of the two dots revealed the implement of one-pot sequential reactions
which provides a new access for controllable synthesis of carbon dots.
碳点聚集配体荧光传感
carbon dots(CDs)aggregatesreceptorfluorescent indicator
BAKER S N, BAKER G A. Luminescent carbon nanodots:emergent nanolights[J].Angew. Chem. Int. Ed., 2010, 49(38):6726-6744.
SU W, WU H, XU H M, et al.. Carbon dots:a booming material for biomedical applications[J].Mater. Chem. Front., 2020, 4(3):821-836.
SUN X C, LEI Y. Fluorescent carbon dots and their sensing applications[J].TrAC Trends Anal. Chem., 2017, 89:163-180.
YUAN F L, LI S H, FAN Z T,et al.. Shining carbon dots:synthesis and biomedical and optoelectronic applications[J].Nano Today, 2016, 11(5):565-586.
YUAN T, MENG T, HE P, et al.. Carbon quantum dots:an emerging material for optoelectronic applications[J].J. Mater. Chem. C, 2019, 7(23):6820-6835.
SHI X X, MENG H M, SUN Y Q, et al.. Far-red to near-infrared carbon dots:preparation and applications in biotechnology[J].Small, 2019, 15(48):1901507.
DAS R, BANDYOPADHYAY R, PRAMANIK P. Carbon quantum dots from natural resource:a review[J].Mater. Today Chem., 2018, 8:96-109.
DEVI P, RAJPUT P, THAKUR A, et al.. Recent advances in carbon quantum dot-based sensing of heavy metals in water[J].TrAC Trends Anal. Chem., 2019, 114:171-195.
REN X, ZHANG F, GUO B P, et al.. Synthesis of N-doped micropore carbon quantum dots with high quantum yield and dual-wavelength photoluminescence emission from biomass for cellular imaging[J].Nanomaterials, 2019, 9(4):495-1-13.
YE X X, XIANG Y H, WANG Q R, et al.. A red emissive two-photon fluorescence probe based on carbon dots for intracellular pH detection[J].Small, 2019, 15(48):1901673.
TEPLIAKOV N V, KUNDELEV E V, KHAVLYUK P D, et al.. sp2-sp3-hybridized atomic domains determine optical features of carbon dots[J].ACS Nano, 2019, 13(9):10737-10744.
YAO B W, HUANG H, LIU Y, et al.. Carbon dots:a small conundrum[J].Trends Chem., 2019, 1(2):235-246.
WANG Z X, YU X H, LI F, et al.. Preparation of boron-doped carbon dots for fluorometric determination of Pb(Ⅱ), Cu(Ⅱ) and pyrophosphate ions[J].Microchim. Acta, 2017, 184(12):4775-4783.
TIAN T, HE Y, GE Y L, et al.. One-pot synthesis of boron and nitrogen co-doped carbon dots as the fluorescence probe for dopamine based on the redox reaction between Cr(Ⅵ) and dopamine[J].Sens. Actuators B:Chem., 2017, 240:1265-1271.
ZHOU J, ZHOU H, TANG J B, et al.. Carbon dots doped with heteroatoms for fluorescent bioimaging:a review[J].Microchim. Acta, 2017, 184(2):343-368.
LI L B, YU B, YOU T Y. Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (Ⅱ) ions[J].Biosens. Bioelectron., 2015, 74:263-269.
XU Q, PU P, ZHAO J G, et al.. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(Ⅲ) detection[J].J. Mater. Chem. A, 2015, 3(2):542-546.
ZUO G C, XIE A M, LI J J, et al.. Large emission red-shift of carbon dots by fluorine doping and their applications for red cell imaging and sensitive intracellular Ag+ detection[J].J. Phys. Chem. C, 2017, 121(47):26558-26565.
YANG W N, ZHANG H, LAI J X, et al.. Carbon dots with red-shifted photoluminescence by fluorine doping for optical bio-imaging[J].Carbon, 2018, 128:78-85.
FAN H H, XIANG G Q, WANG Y L,et al.. Manganese-doped carbon quantum dots-based fluorescent probe for selective and sensitive sensing of 2, 4, 6-trinitrophenol via an inner filtering effect[J].Spectrochim. Acta Part A:Mol. Biomol. Spectrosc., 2018, 205:221-226.
JI Z, AI P H, SHAO C, et al.. Manganese-doped carbon dots for magnetic resonance/optical dual-modal imaging of tiny brain glioma[J].ACS Biomater. Sci. Eng., 2018, 4(6):2089-2094.
LIN L P, LUO Y X, TSAI P Y, et al.. Metal ions doped carbon quantum dots:synthesis, physicochemical properties, and their applications[J].TrAC Trends Anal. Chem., 2018, 103:87-101.
LONG P, FENG Y Y, CAO C, et al.. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots[J].Adv. Funct. Mater., 2018, 28(37):1800791.
ZHANG L, WANG H P, HU Q, et al.. Carbon quantum dots doped with phosphorus and nitrogen are a viable fluorescent nanoprobe for determination and cellular imaging of vitamin B12 and cobalt(Ⅱ)[J].Microchim. Acta, 2019, 186(8):506.
YAN F Y, JIANG Y X, SUN X D, et al.. Surface modification and chemical functionalization of carbon dots:a review[J].Microchim. Acta, 2018, 185(9):424.
ZHAO T, WANG J P, HE J L, et al.. One-step post-imprint modification achieve dual-function of glycoprotein fluorescent sensor by "Click Chemistry"[J].Biosens. Bioelectron., 2017, 91:756-761.
RONG M C, LIANG Y C, ZHAO D L, et al.. A ratiometric fluorescence visual test paper for an anthrax biomarker based on functionalized manganese-doped carbon dots[J].Sens. Actuators B:Chem., 2018, 265:498-505.
ZHENG M, QIAO L H, SU Y, et al.. A postmodification strategy to modulate the photoluminescence of carbon dots from blue to green and red:synthesis and applications[J].J. Mater. Chem. B, 2019, 7(24):3840-3845.
SATO K, SATO R, ISO Y, et al.. Surface modification strategy for fluorescence solvatochromism of carbon dots prepared from p-phenylenediamine[J].Chem. Commun., 2020, 56(14):2174-2177.
LIU H F, SUN Y Q, LI Z H, et al.. SciFinder-guided rational design of fluorescent carbon dots for ratiometric monitoring intracellular pH fluctuations under heat shock[J].Chin. Chem. Lett., 2019, 30(9):1647-1651.
GENG X, SUN Y Q, LI Z H, et al.. Retrosynthesis of tunable fluorescent carbon dots for precise long-term mitochondrial tracking[J].Small, 2019, 15(48):1901517.
PAUL M, DESIRAJU G R. From a binary to a quaternary cocrystal:an unusual supramolecular synthon[J].Angew. Chem. Int. Ed., 2019, 58(35):12027-12031.
DESIRAJU G R. Supramolecular synthons in crystal engineering-a new organic synthesis[J].Angew. Chem. Int. Ed., 1995, 34(21):2311-2327.
MIR N A, DUBEY R, DESIRAJU G R. Strategy and methodology in the synthesis of multicomponent molecular solids:the quest for higher cocrystals[J].Acc. Chem. Res., 2019, 52(8):2210-2220.
LIN C G, ZHOU W, XIONG X T, et al.. Digital control of multistep hydrothermal synthesis by using 3D printed reactionware for the synthesis of metal-organic frameworks[J].Angew. Chem. Int. Ed., 2018, 130(51):16958-16962.
QU K G, WANG J S, REN J S, et al.. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(Ⅲ) ions and dopamine[J].Chem. Eur. J., 2013, 19(22):7243-7249.
SATO R, ISO Y, ISOBE T. Fluorescence solvatochromism of carbon dot dispersions prepared from phenylenediamine and optimization of red emission[J].Langmuir, 2019, 35(47):15257-15266.
HINTERBERGER V, WANG W S, DAMM C, et al.. Microwave-assisted one-step synthesis of white light-emitting carbon dot suspensions[J].Opt. Mater., 2018, 80:110-119.
PROCHÁZKOVÁ E, JANSA P, BŘEZINOVÁ A, et al.. Compound instability in dimethyl sulphoxide, case studies with 5-aminopyrimidines and the implications for compound storage and screening[J].Bioorg. Med. Chem. Lett., 2012, 22(20):6405-6409.
OWENS J L, DRYHURST G. Electrochemical oxidation of 5, 6-diaminouracil an investigation by thin-layer spectroelectrochemistry[J].J. Electroanal. Chem. Int. Electrochem., 1977, 80(1):171-180.
AL-ARAB M M, HAMILTON G A. Possible model reaction for some amine oxidases. Kinetics and mechanism of the copper(Ⅱ)-catalyzed autoxidation of some diaminouracils[J].J. Am. Chem. Soc., 1986, 108(19):5972-5978.
MURINOV Y I, GRABOVSKII S A, KABAL'NOVA N N. Pro- and antioxidant properties of uracil derivatives[J].Russ. Chem. Bull., 2019, 68(5):946-954.
EL-KALYOUBI S A, FAYED E A, ABDEL-RAZEK A S. One pot synthesis, antimicrobial and antioxidant activities of fused uracils:pyrimidodiazepines, lumazines, triazolouracil and xanthines[J].Chem. Cent. J., 2017, 11(1):66.
SUNDARALINGAM M, CARRABINE J A. Mercury binding to nucleic acids. Crystal and molecular structures of 2:1 complexes of uracil-mercuric chloride and dihydrouracil-mercuric chloride[J].Biochemistry, 1971, 10(2):292-299.
JIANG K, SUN S, ZHANG L, et al.. Red, green, and blue luminescence by carbon dots:full-color emission tuning and multicolor cellular imaging[J].Angew. Chem. Int. Ed., 2015, 54(18):5360-5363.
ELKALYOUBI S, FAYED E. Synthesis and evaluation of antitumour activities of novel fused tri- and tetracyclic uracil derivatives[J].J. Chem. Res., 2016, 40(12):771-777.
ATCHUDAN R, EDISON T N J I, CHAKRADHAR D, et al.. Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications[J].Sens. Actuators B:Chem., 2017, 246:497-509.
MISHRA A K, CHATTOPADHYAY D K, SREEDHAR B, et al.. FT-IR and XPS studies of polyurethane-urea-imide coatings[J].Prog. Org. Coat., 2006, 55(3):231-243.
FANG L Y, XU Q, ZHENG X, et al.. Soy flour-derived carbon dots:facile preparation, fluorescence enhancement, and sensitive Fe3+ detection[J].J. Nanopart. Res., 2016, 18(8):224-1-13.
PEELING J, HRUSKA F E, MCKINNON D M, et al.. ESCA studies of the uracil base. The effect of methylation, thionation, and ionization on charge distribution[J].Can. J. Chem., 1978, 56(18):2405-2411.
DING H, WEI J S, XIONG H M. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence[J].Nanoscale, 2014, 6(22):13817-13823.
TENG C C, MA C C M, CHIOU K C, et al.. Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride[J].Compos. Part B:Eng., 2012, 43(2):265-271.
ZHAO F F, ZHANG T Y, LIU Q, et al.. Aphen-derived N-doped white-emitting carbon dots with room temperature phosphorescence for versatile applications[J].Sens. Actuators B:Chem., 2020, 304:127344.
LI Y, LIN H C, LUO C H, et al.. Aggregation induced red shift emission of phosphorus doped carbon dots[J].RSC Adv., 2017, 7(51):32225-32228.
CHEN Y, ZHENG M, XIAO Y, et al.. A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission[J].Adv. Mater., 2016, 28(2):312-318.
YANG H Y, LIU Y L, GUO Z Y, et al.. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission[J].Nat. Commun., 2019, 10(1):1789.
CHEN S, LIU J W, CHEN M L, et al.. Unusual emission transformation of graphene quantum dots induced by self-assembled aggregation[J].Chem. Commun., 2012, 48(61):7637-7639.
HOLA K, BOURLINOS A B, KOZAK O, et al.. Photoluminescence effects of graphitic core size and surface functional groups in carbon dots:COO- induced red-shift emission[J].Carbon, 2014, 70:279-286.
CHEN Y Q, LIAN H Z, WEI Y, et al.. Concentration-induced multi-colored emissions in carbon dots:origination from triple fluorescent centers[J].Nanoscale, 2018, 10(14):6734-6743.
BA X X, ZHANG L, YIN Y L, et al.. Luminescent carbon dots with concentration-dependent emission in solution and yellow emission in solid state[J].J. Colloid Interface Sci., 2020, 565:77-85.
WEI J Y, LOU Q, ZANG J H, et al.. Scalable synthesis of green fluorescent carbon dot powders with unprecedented efficiency[J].Adv. Opt. Mater., 2020, 8(7):1901938.
0
浏览量
249
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构