浏览全部资源
扫码关注微信
广东工业大学 物理与光电工程学院, 广东 广州 510006
[ "练惠旺(1996-), 男, 广东惠州人, 硕士研究生, 2019年于广东工业大学获得学士学位, 主要从事钙钛矿水热稳定性方面的研究。E-mail:hwlian@sina.cn" ]
[ "李杨(1984-), 男, 山东淄博人, 博士, 教授, 博士研究生导师, 2014年于华南理工大学获得博士学位, 主要从事无机固体发光材料缺陷调控, 特别是长余辉材料的设计、机理及应用的研究。E-mail:lychris@sina.com" ]
纸质出版日期:2020-8,
收稿日期:2020-5-15,
录用日期:2020-6-4
扫 描 看 全 文
练惠旺, 康茹, 陈星中, 等. 全无机钙钛矿CsPb
Hui-wang LIAN, Ru KANG, Xing-zhong CHEN, et al. Research Progress on Thermal Stability of All Inorganic Perovskite CsPb
练惠旺, 康茹, 陈星中, 等. 全无机钙钛矿CsPb
Hui-wang LIAN, Ru KANG, Xing-zhong CHEN, et al. Research Progress on Thermal Stability of All Inorganic Perovskite CsPb
凭借高量子效率、带隙可调、制备简单、高吸光系数和高耐缺陷性的优点,全无机钙钛矿(CsPb
X
3
,
X
=Cl,Br,I)材料在光电和光伏器件领域展现出较出色的应用前景。然而,现有材料热稳定性的不足降低了这些应用的耐久性和可靠性。本综述从全无机钙钛矿材料温度相关的热分解过程入手,有针对性地阐述了全无机钙钛矿热稳定性增强策略,并展示了迄今报道的高可靠性全无机钙钛矿光电和光伏器件的性能参数和应用领域。最后对今后发展热稳定全无机钙钛矿材料存在的机遇进行了展望。
In virtue of the high photoluminescence quantum yield(PLQY)
tunable bandgap
facile synthesis
strong light-absorption ability and high defect tolerance
all inorganic perovskites CsPb
X
3
(
X
=Cl
Br
I) hold a great promise in optoelectronic and photovoltaic fields
such as solid-state lighting
lasing
solar cell
and display
etc
. Despite the impressive achievements
the existing inorganic perovskites still receive strong criticism for the lack of thermal stability. This is because their poor thermal stability will observably reduce the durability
reliability
and long-term stability of optoelectronic devices. Herein
in this review
the influence of temperature on the stability of inorganic perovskites is discussed. The reasons behind the thermal decomposition of inorganic perovskites including the desorption of the surface ligands and phase transition under high temperatures are analyzed as well. Subsequently
the recent strategies towards enhancing the thermal stability of CsPb
X
3
such as ions doping
surface passivation
and composite structure
are emphatically reviewed. Furthermore
the performance parameters of optoelectronic perovskites-devices with high reliability reported so far are presented. Finally
we summarize and prospect the challenge and opportunity for future development of thermally stable inorganic perovskite CsPb
X
3
.
全无机钙钛矿热稳定性CsPbX3
all inorganic perovskitethermal stabilityCsPbX3
AKKERMAN Q A, RAINÒ G, KOVALENKO M V, et al.. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals[J].Nat. Mater., 2018, 17(5):394-405.
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J].Nano Lett., 2015, 15(6):3692-3696.
DE ROO J, IBÁÑEZ M, GEIREGAT P, et al.. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals[J].ACS Nano, 2016, 10(2):2071-2081.
NEDELCU G, PROTESESCU L, YAKUNIN S, et al.. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I)[J].Nano Lett., 2015, 15(8):5635-5640.
HUANG H, BODNARCHUK M I, KERSHAW S V, et al.. Lead halide perovskite nanocrystals in the research spotlight:stability and defect tolerance[J].ACS Energy Lett., 2017, 2(9):2071-2083.
YANG D D, LI X M, ZHOU W H, et al.. CsPbBr3 quantum dots 2.0:benzenesulfonic acid equivalent ligand awakens complete purification[J].Adv. Mater., 2019, 31(30):1900767.
LI X M, WU Y, ZHANG S L, et al.. CsPbX3 quantum dots for lighting and displays:room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J].Adv. Funct. Mater., 2016, 26(15):2435-2445.
LI X M, CAO F, YU D J, et al.. All inorganic halide perovskites nanosystem:synthesis, structural features, optical properties and optoelectronic applications[J].Small, 2017, 13(9):1603996-1-24.
GU H, ZHAO C, ZHANG Y Q,et al.. Stable high-performance perovskite solar cells based on inorganic electron transporting bi-layers[J].Nanotechnology, 2018, 29(38):385401-1-9.
CHRISTODOULOU S, DI STASIO F, PRADHAN S,et al.. High-open-circuit-voltage solar cells based on bright mixed-halide CsPbBrI2 perovskite nanocrystals synthesized under ambient air conditions[J].J. Phys. Chem. C, 2018, 122(14):7621-7626.
HE X H, QIU Y C, YANG S H. Fully-inorganic trihalide perovskite nanocrystals:a new research frontier of optoelectronic materials[J].Adv. Mater., 2017, 29(32):1700775-1-27.
NIEZGODA J S, FOLEY B, CHEN A Z, et al.. Improved charge collection in highly efficient CsPbBrI2 solar cells with light-induced dealloying[J].ACS Energy Lett., 2017, 2(5):1043-1049.
LIU C, LI W Z, ZHANG C L, et al.. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%[J].J. Am. Chem. Soc., 2018, 140(11):3825-3828.
YANG Z B, YU Z H, WEI H T, et al.. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells[J].Nat. Commun., 2019, 10(1):4498.
JIA Y L, WANG R, ZHANG Y,et al.. Large current efficiency enhancement in the CsPbBr3 perovskite light-emitting diodes assisted by an ultrathin buffer layer[J].J. Lumin., 2019, 209:251-257.
XU Y, LOU S Q, XIA C, et al.. Controllable synthesis of all inorganic lead halide perovskite nanocrystals and white light-emitting diodes based on CsPbBr3 nanocrystals[J].J. Lumin., 2020, 222:117132.
LI G R, RIVAROLA F W R, DAVIS N J L K, et al.. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method[J].Adv. Mater., 2016, 28(18):3528-3534.
VELDHUIS S A, BOIX P P, YANTARA N, et al.. Perovskite materials for light-emitting diodes and lasers[J].Adv. Mater., 2016, 28(32):6804-6834.
LIAN H W, LI Y, SHARAFUDEEN K, et al.. Highly thermotolerant metal halide perovskite solids[J].Adv. Mater., 2020, doi:10.1002/adma.202002495.
XUAN T T, YANG X F, LOU S Q, et al.. Highly stable CsPbBr 3 quantum dots coated with alkyl phosphate for white light-emitting diodes[J].Nanoscale, 2017, 9(40):15286-15290.
CHEN W T, ZHANG S S, LIU Z H, et al.. A tailored nickel oxide hole-transporting layer to improve the long-term thermal stability of inorganic perovskite solar cells[J].Solar RRL, 2019, 3(11):1900346.
SU M, FAN B, LI H Y, et al.. Hydroxyl terminated mesoporous silica-assisted dispersion of ligand-free CsPbBr3/Cs4PbBr6 nanocrystals in polymer for stable white LED[J].Nanoscale, 2019, 11(3):1335-1342.
YASSITEPE E, YANG Z Y, VOZNYY O, et al.. Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light-emitting diodes[J].Adv. Funct. Mater., 2016, 26(47):8757-8763.
LIAO M L, SHAN B B, LI M. In situ Raman spectroscopic studies of thermal stability of all-inorganic cesium lead halide (CsPbX3, X=Cl, Br, I) perovskite nanocrystals[J].J. Phys. Chem. Lett., 2019, 10(6):1217-1225.
DIROLL B T, NEDELCU G, KOVALENKO M V, et al.. High-temperature photoluminescence of CsPbX3 (X=Cl, Br, I) nanocrystals[J].Adv. Funct. Mater., 2017, 27(21):1606750.
PALAZON F, URSO C, DE TRIZIO L, et al.. Postsynthesis transformation of insulating Cs4PbBr6 nanocrystals into bright perovskite CsPbBr3 through physical and chemical extraction of CsBr[J].ACS Energy Lett., 2017, 2(10):2445-2448.
LIU W Y, LIN Q L, LI H B, et al.. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J].J. Am. Chem. Soc., 2016, 138(45):14954-14961.
PAROBEK D, ROMAN B J, DONG Y T, et al.. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals[J].Nano Lett., 2016, 16(12):7376-7380.
LIU H W, WU Z N, SHAO J R, et al.. CsPbxMn1-xCl3 perovskite quantum dots with high Mn substitution ratio[J].ACS Nano, 2017, 11(2):2239-2247.
MIR W J, JAGADEESWARARAO M, DAS S, et al.. Colloidal Mn-doped cesium lead halide perovskite nanoplatelets[J].ACS Energy Lett., 2017, 2(3):537-543.
VAN DER STAM W, GEUCHIES J J, ALTANTZIS T, et al.. Highly emissive divalent-ion-doped colloidal CsPb1-xMxBr3 perovskite nanocrystals through cation exchange[J].J. Am. Chem. Soc., 2017, 139(11):4087-4097.
BI C H, WANG S X, LI Q, et al.. Thermally stable copper(Ⅱ)-doped cesium lead halide perovskite quantum dots with strong blue emission[J].J. Phys. Chem. Lett., 2019, 10(5):943-952.
WU Y, WEI C T, LI X M, et al.. In situ passivation of PbBr64- octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield[J].ACS Energy Lett., 2018, 3(9):2030-2037.
LIU F, ZHANG Y H, DING C, et al.. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield[J].ACS Nano, 2017, 11(10):10373-10383.
WANG C J, CHESMAN A S R, JASIENIAK J J. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid[J].Chem. Commun., 2017, 53(1):232-235.
YAN D D, SHI T C, ZANG Z G, et al.. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification[J].Small, 2019, 15(23):1901173-1-11.
CHEN K Q, ZHONG Q H, CHEN W, et al.. Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells[J].Adv. Funct. Mater., 2019, 29(24):1900991.
CAI Y T, WANG H R, LI Y, et al.. Trimethylsilyl iodine-mediated synthesis of highly bright red-emitting CsPbI3 perovskite quantum dots with significantly improved stability[J].Chem. Mater., 2019, 31(3):881-889.
MA K Z, DU X Y, ZHANG Y W, et al.. In situ fabrication of halide perovskite nanocrystals embedded in polymer compositesvia microfluidic spinning microreactors[J].J. Mater. Chem. C, 2017, 5(36):9398-9404.
ZENG Q S, ZHANG X Y, FENG X L, et al.. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V[J].Adv. Mater., 2018, 30(9):1705393-1-9.
LIU S J, HE M L, DI X X, et al.. CsPbX3 nanocrystals films coated on YAG:Ce3+ PiG for warm white lighting source[J].Chem. Eng. J., 2017, 330:823-830.
LI Y, KRENTZ T M, WANG L,et al.. Ligand engineering of polymer nanocomposites:from the simple to the complex[J].ACS Appl. Mater. Interfaces, 2014, 6(9):6005-6021.
JIANG B B, PANG X C, LI B, et al.. Organic-inorganic nanocomposites via placing monodisperse ferroelectric nanocrystals in direct and permanent contact with ferroelectric polymers[J].J. Am. Chem. Soc., 2015, 137(36):11760-11767.
BALAZS A C, EMRICK T, RUSSELL T P. Nanoparticle polymer composites:where two small worlds meet[J].Science, 2006, 314(5802):1107-1110.
MEYNS M, PERÁLVAREZ M, HEUER-JUNGEMANN A, et al.. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs[J].ACS Appl. Mater. Interfaces, 2016, 8(30):19579-19586.
SONG Y H, YOO J S, KANG B K, et al.. Long-term stable stacked CsPbBr3 quantum dot films for highly efficient white light generation in LEDs[J].Nanoscale, 2016, 8(47):19523-19526.
LIAO H, GUO S B, CAO S, et al.. A general strategy for in situ growth of all-inorganic CsPbX3 (X=Br, I, and Cl) perovskite nanocrystals in polymer fibers toward significantly enhanced water/thermal stabilities[J].Adv. Opt. Mater., 2018, 6(15):1800346-1-8.
HE J, HE Z Q, TOWERS A, et al.. Ligand assisted swelling-deswelling microencapsulation (LASDM) for stable, color tunable perovskite-polymer composites[J].Nanoscale Adv., 2020, 2(5):2034-2043.
LI Z C, YAO W, KONG L, et al.. General method for the synthesis of ultrastable core/shell quantum dots by aluminum doping[J].J. Am. Chem. Soc., 2015, 137(39):12430-12433.
SEO S W, JUNG E, LIM C, et al.. Moisture permeation through ultrathin TiO2 films grown by atomic layer deposition[J].Appl. Phys. Express, 2012, 5(3):035701.
DO Y R, PARK D H, KIM Y S. Al2O3 nanoencasulation of BaMgAl10O17:Eu2+ phosphors for improved aging properties in plasma display panels[J].J. Electrochem. Soc., 2004, 151(10):H210-H212.
PAREJA R R, IBÁÑEZ R L, MARTÍN F, et al.. Corrosion behaviour of zirconia barrier coatings on galvanized steel[J].Surf. Coat. Technol., 2006, 200(22-23):6606-6610.
LONGO G, PERTEGÁS A, MARTÍNEZ-SARTI L, et al.. Highly luminescent perovskite-aluminum oxide composites[J].J. Mater. Chem. C, 2015, 3(43):11286-11289.
KOJIMA A, IKEGAMI M, TESHIMA K, et al.. Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media[J].Chem. Lett., 2012, 41(4):397-399.
HU H C, WU L Z, TAN Y S, et al.. Interfacial synthesis of highly stable CsPbX3/oxide Janus nanoparticles[J].J. Am. Chem. Soc., 2018, 140(1):406-412.
BILLSTRAND B, BIAN K F, KARLER C, et al.. Solution based synthesis of Cs4PbBr6 perovskite particles with high luminescence and stability[J].MRS Adv., 2018, 3(45-46):2825-2831.
UDAYABHASKARARAO T, HOUBEN L, COHEN H, et al.. A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation[J].Chem. Mater., 2018, 30(1):84-93.
QIN Z J, DAI S Y, HADJIEV V G, et al.. Revealing the origin of luminescence center in 0D Cs4PbBr6 perovskite[J].Chem. Mater., 2019, 31(21):9098-9104.
ZHANG Y H, SINATRA L, ALAROUSU E, et al.. Ligand-free nanocrystals of highly emissive Cs4PbBr6 perovskite[J].J. Phys. Chem. C, 2018, 122(11):6493-6498.
ZHANG Y H, SAIDAMINOV M I, DURSUN I, et al.. Zero-dimensional Cs4PbBr6 perovskite nanocrystals[J].J. Phys. Chem. Lett., 2017, 8(5):961-965.
AKKERMAN Q A, ABDELHADY A L, MANNA L. Zero-dimensional cesium lead halides:history, properties, and challenges[J].J. Phys. Chem. Lett., 2018, 9(9):2326-2337.
SAIDAMINOV M I, ALMUTLAQ J, SARMAH S, et al.. Pure Cs4PbBr6:highly luminescent zero-dimensional perovskite solids[J].ACS Energy Lett., 2016, 1(4):840-845.
YIN J, ZHANG Y H, BRUNO A, et al.. Intrinsic lead ion emissions in zero-dimensional Cs4PbBr6 nanocrystals[J].ACS Energy Lett., 2017, 2(12):2805-2811.
QUAN L N, QUINTERO-BERMUDEZ R, VOZNYY O, et al.. Highly emissive green perovskite nanocrystals in a solid state crystalline matrix[J].Adv. Mater., 2017, 29(21):1605945-1-6.
CHEN X M, ZHANG F, GE Y, et al.. Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence:nonstoichiometry induced transformation and light-emitting applications[J].Adv. Funct. Mater., 2018, 28(16):1706567.
XU L M, CHEN J W, SONG J Z, et al.. Double-protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-modal anti-counterfeiting codes[J].ACS Appl. Mater. Interfaces, 2017, 9(31):26556-26564.
LI B, ZHANG Y N, FU L, et al.. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells[J].Nat. Commun., 2018, 9(1):1076.
SHI J, GE W, GAO W, et al.. Enhanced thermal stability of halide perovskite CsPbX3 nanocrystals by a facile TPU encapsulation[J].Adv. Opt. Mater., 2020, 8(4):1901516.
SHEN X Y, SUN C, BAI X, et al.. Efficient and stable CsPb(Br/I)3@anthracene composites for white light-emitting devices[J].ACS Appl. Mater. Interfaces, 2018, 10(19):16768-16775.
PARK D H, HAN J S, KIM W, et al.. Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut[J].Dyes Pigm., 2018, 149:246-252.
WANG H C, LIN S Y, TANG A C, et al.. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display[J].Angew. Chem. Int. Ed., 2016, 55(28):7924-7929.
LOU S Q, XUAN T T, YU C Y, et al.. Nanocomposites of CsPbBr3 perovskite nanocrystals in an ammonium bromide framework with enhanced stability[J].J. Mater. Chem. C, 2017, 5(30):7431-7435.
DI X, HU Z, JIANG J, et al.. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs[J].Chem. Commun., 2017, 53(80):11068-11071.
YOON H C, LEE S, SONG J K, et al.. Efficient and stable CsPbBr3 quantum-dot powders passivated and encapsulated with a mixed silicon nitride and silicon oxide inorganic polymer matrix[J].ACS Appl. Mater. Interfaces, 2018, 10(14):11756-11767.
WANG K, JIN Z W, LIANG L, et al.. Publisher correction:all-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%[J].Nat. Commun., 2018, 9(1):4935.
0
浏览量
333
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构