浏览全部资源
扫码关注微信
1.华南农业大学材料与能源学院 生物基材料与能源教育部重点实验室/广东省光学农业工程技术研究中心, 广东 广州 510642
2.华南农业大学 园艺学院, 广东 广州 510642
3.岭南现代农业科学与技术广东省实验室, 广东 广州 510642
4.中国农业科学院 都市农业研究所, 四川 成都 610213
[ "潘晓琴(1996-), 女, 广东潮州人, 硕士, 2020年于华南农业大学获得硕士学位, 主要从事半导体材料对蔬菜光合作用的影响的研究。E-mail:3215263951@qq.com" ]
[ "雷炳富(1977-),男,广东茂名人,博士,教授,博士研究生导师,2007年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光-光/电-光转换功能材料及其在设施农业领域的工程化应用、农业环境中重金属离子污染物检测及氧气等的光学传感材料合成与性能的研究。E-mail:tleibf@scau.edu.cn" ]
纸质出版日期:2020-7,
收稿日期:2020-5-2,
录用日期:2020-5-13
扫 描 看 全 文
潘晓琴, 李常健, 张浩然, 等. 荧光硅量子点作为叶面光肥提高生菜对光能利用率的机理研究[J]. 发光学报, 2020,41(7):863-872.
Xiao-qin PAN, Chang-jian LI, Hao-ran ZHANG, et al. Mechanism of Fluorescent Silicon Quantum Dot as Foliar Light Fertilizer to Improve Lettuce's Utilization of Light Energy[J]. Chinese Journal of Luminescence, 2020,41(7):863-872.
潘晓琴, 李常健, 张浩然, 等. 荧光硅量子点作为叶面光肥提高生菜对光能利用率的机理研究[J]. 发光学报, 2020,41(7):863-872. DOI: 10.37188/fgxb20204107.0863.
Xiao-qin PAN, Chang-jian LI, Hao-ran ZHANG, et al. Mechanism of Fluorescent Silicon Quantum Dot as Foliar Light Fertilizer to Improve Lettuce's Utilization of Light Energy[J]. Chinese Journal of Luminescence, 2020,41(7):863-872. DOI: 10.37188/fgxb20204107.0863.
采用水热法制备了荧光硅量子点。通过透射电镜、红外光谱、X射线光电子能谱、光致激发和发射光谱及荧光衰减曲线等手段对样品形貌及发光性能进行了研究。通过生菜种植实验,研究了荧光硅量子点作为叶面光肥提高生菜对光能利用效率的效应。实验结果表明,透射电镜测得所制备的荧光硅量子点尺寸均一,平均尺寸为3.6 nm。傅里叶红外变换光谱及X射线光电子能谱表明该量子点表面具有丰富的含氧官能团,因而具有优异分水散性。光致荧光光谱表明,该量子点的最佳激发和发射峰位分别为385 nm和450 nm,且不具备激发波长依赖特性。荧光硅量子点与生菜的离体叶绿体复合后发现,荧光强度下降但激发态寿命基本不变,同时,复合物对2,6-二氯酚靛酚的还原速率提高。以上结果表明,荧光硅量子点与叶绿体复合时产生了内滤效应,生菜的叶绿体吸收了硅量子点发射的蓝光用于光合作用,从而使生菜的干鲜重均得到了显著性提高。通过叶绿素荧光成像实验进一步验证了喷施荧光硅量子点叶面光肥时生菜的光合作用速率得到了提高。
Fluorescent silicon quantum dots(SiQDs) were prepared by hydrothermal reaction method. The morphology and fluorescence properties of SiQDs were investigated by transmission electron microscopy(TEM)
Fourier transform infrared spectroscopy(FTIR)
X-ray photoelectron spectroscopy(XPS)
photoluminescence(PL) excitation and emission spectra and excited-state decay curve. By lettuce cultivation experiment
the effect of SiQDs as foliar light fertilizer to improve light energy utilization of lettuce was studied. TEM image showed that the average size of the SiQDs is 3.6 nm with the uniform size. These results of FTIR and XPS demonstrated abundant oxygen-containing functional groups on SiQDs surface
which contributed to its excellent water dispersibility. The PL spectrum of SiQDs demonstrated that the optimal emission of the SiQDs is 450 nm when excited at 385 nm
which is also independent of excitation wavelength. When combined with chloroplast(CLP)
in vitro
the PL intensity of the SiQDs decreased
but the PL lifetime did not change significantly. Furthermore
reduction rate of 2
6-dichlorophenolindophenol(DCPIP) in this combined system was increased. All these results above reveal that inner-filtration effect happens in SiQDs/CLP combined system. CLP can absorb the blue light emitted from SiQDs for photosynthesis to increase the total yield of fresh and dry weight of lettuce significantly. The chlorophyll fluorescence imaging results further demonstrated the increased maximum photosynthetic rate
硅量子点叶面光肥内滤效应光能利用率
fluorescent silicon quantum dotfoliar light fertilizerinner-filter effectutilization of light energy
RUANGRAK E, KHUMMUENG W. Effects of artificial light sources on accumulation of phytochemical contents in hydroponic lettuce[J].J. Hortic. Sci. Biotechnol., 2019, 94(3):378-388.
CHEN W B, ZHANG X J, ZHOU J X, et al.. Glass-ceramics with thermally stable blue-red emission for high-power horticultural LED applications[J].J. Mater. Chem. C, 2020, 8(12):3996-4002.
WU W B, ZHANG Z B, DONG R Y, et al.. Characterization and properties of a Sr2Si5N8:Eu2+-based light-conversion agricultural film[J].J. Rare Earth., 2020, 38(5):539-545.
WOLF B M, BLANKENSHIP R E. Far-red light acclimation in diverse oxygenic photosynthetic organisms[J].Photosynth. Res., 2019, 142(3):349-359.
TRIPATHI S, HOANG T N Q, HAN Y J, et al.. Regulation of photomorphogenic development by plant phytochromes[J].Int. J. Mol. Sci., 2019, 20(24):6165.
YU Y J, WANG Y T, LIU W J, et al.. Exploration of highly efficient light conversion agents for agricultural film based on the bay-substituted perylene diimides derivatives[J].Dyes Pigm., 2018, 159:483-490.
AACHARYA R, CHHIPA H. 15-nanocarbon fertilizers: implications of carbon nanomaterials in sustainable agriculture production[M]. ABD-ELSALAM K A.Carbon Nanomaterials for Agri-food and Environmental Applications. Amsterdam: Elsevier, 2020: 297-321.
PAN X Q, LI D N, FANG Y P, et al.. Enhanced photogenerated electron transfer in a semiartificial photosynthesis system based on highly dispersed titanium oxide nanoparticles[J].J. Phys. Chem. Lett., 2020, 11(5):1822-1827.
YAO B W, HUANG H, LIU Y, et al.. Carbon dots:a small conundrum[J].Trends Chem., 2019, 1(2):235-246.
姜杰, 李士浩, 严一楠, 等.氮掺杂高量子产率荧光碳点的制备及其体外生物成像研究[J].发光学报, 2017, 38(12):1567-1574.
JIANG J, LI S H, YAN Y N, et al.. Preparation of N-doped fluorescent carbon dots with high quantum yield for in-vitro bioimaging[J].Chin. J. Lumin., 2017, 38(12):1567-1574. (in Chinese)
武建露, 闫桂琴.基于氮掺杂碳量子点/DNA自组装纳米探针检测鱼精蛋白[J].发光学报, 2018, 39(6):870-876.
WU J L, YAN G Q. Detection of protamine based on nitrogen doped carbon quantum dot/DNA self-assembled nano probe[J].Chin. J. Lumin., 2018, 39(6):870-876. (in Chinese)
DONG R Y, LI Y J, LI W, et al.. Recent developments in luminescent nanoparticles for plant imaging and photosynthesis[J].J. Rare Earth., 2019, 37(9):903-915.
LI D N, LI W, ZHANG H R, et al.. Far-red carbon dots as efficient light-harvesting agents for enhanced photosynthesis[J].ACS Appl. Mater. Interfaces, 2020, 12(18):21009-21019.
LI W, ZHENG Y J, ZHANG H R, et al.. Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants[J].ACS Appl. Mater. Interfaces, 2016, 8(31):19939-19945.
LI W, WU S S, ZHANG H R, et al.. Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots[J].Adv. Funct. Mater., 2017, 28(44):1804004.
CHEN Y, SUN L N, LIAO F, et al.. Fluorescent-stable and water-soluble two-component-modified silicon quantum dots and their application for bioimaging[J].J. Lumin., 2019, 215:116644.
GAO G, JIANG Y W, SUN W, et al.. Fluorescent quantum dots for microbial imaging[J].Chin. Chem. Lett., 2018, 29(10):1475-1485.
LI Y J, LI W, ZHANG H R, et al.. Biomimetic preparation of silicon quantum dots and their phytophysiology effect on cucumber seedlings[J].J. Mater. Chem. B, 2019, 7(7):1107-1115.
LI Y J, LI W, ZHANG H R, et al.. Amplified light harvesting for enhancing Italian lettuce photosynthesis using water soluble silicon quantum dots as artificial antennas[J].Nanoscale, 2020, 12(1):155-166.
HOFFMANN A M, NOGA G, HUNSCHE M. High blue light improves acclimation and photosynthetic recovery of pepper plants exposed to UV stress[J].Environ. Exp. Bot., 2015, 109:254-263.
AUCIQUE-PÉREZ C E, DE MENEZES SILVA P E, MOREIRA W R, et al.. Photosynthesis impairments and excitation energy dissipation on wheat plants supplied with silicon and infected with Pyricularia oryzae [J].Plant Physiol. Biochem., 2017, 121:196-205.
ZHANG Y, SHI Y, GONG H J, et al.. Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress[J].J. Integr. Agric., 2018, 17(10):2151-2159.
GONG T, LI Y J, LEI B F, et al.. Preparation and oxygen sensing properties of water-soluble silicon nanoparticles assembled SBA-15[J]. Mater. Res. Bull., 2019, 111:1-6.
LI W, ZHANG H R, CHEN S, et al.. Preparation and properties of carbon dot-grafted CaAl12O19:Mn4+ color-tunable hybrid phosphor[J].Adv. Opt. Mater., 2016, 4(3):427-434.
LEW T T S, WONG M H, KWAK S Y, et al.. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts[J].Small, 2018, 14(44):1802086.
SHARMA B, TANWAR S, SEN T. One pot green synthesis of Si quantum dots and catalytic Au nanoparticle-Si quantum dot nanocomposite[J].ACS Sustain. Chem. Eng., 2019, 7(3):3309-3318.
HAN Y X, CHEN Y L, FENG J, et al.. One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2, 4, 6-trinitrophenol in aqueous solution[J].Anal. Chem., 2017, 89(5):3001-3008.
MIAO X L, YUE X Y, JI Z Y, et al.. Nitrogen-doped carbon dots decorated on g-C3N4/Ag3PO4 photocatalyst with improved visible light photocatalytic activity and mechanism insight[J].Appl. Catal. B:Environ., 2018, 227:459-469.
WEN Y M, JIA Q Y, NAN F C, et al.. Pheophytin derived near-infrared-light responsive carbon dot assembly as a new phototheranotic agent for bioimaging and photodynamic therapy[J].Chem. -An Asian J., 2019, 14(12):2162-2168.
王诗琪, 涂雨菲, 刘之晓, 等.微波法制备掺氮碳点及其用作探针检测铁离子[J].发光学报, 2019, 40(6):751-757.
WANG S Q, TU Y F, LIU Z X, et al.. Microwave synthesis of nitrogen-doped carbon dots and its application in detection of ferric ions[J].Chin. J. Lumin., 2019, 40(6):751-757. (in Chinese)
LIANG H Q, TAI X M, DU Z P, et al.. Enhanced photocatalytic activity of ZnO sensitized by carbon quantum dots and application in phenol wastewater[J].Opt. Mater., 2020, 100:109674.
HOPE A B. Electron transfers amongst cytochrome f, plastocyanin and photosystem Ⅰ:kinetics and mechanisms[J].Biochim. Biophys.Acta(BBA)-Bioenerg., 2000, 1456(1):5-26.
KOPNOV F, COHEN-OFRI I, NOY D. Electron transport between photosystemII and photosystemI encapsulated in sol-gel glasses[J].Angew. Chem. Int. Ed., 2011, 50(51):12347-12350.
LARUE C, CASTILLO-MICHEL H, STEIN R J, et al.. Innovative combination of spectroscopic techniques to reveal nanoparticle fate in a crop plant[J].Spectrochim. Acta Part B:At. Spectrosc., 2016, 119:17-24.
DU L Q, LI Z P, YAO J L, et al.. Enzyme free glucose sensing by amino-functionalized silicon quantum dot[J].Spectrochim. Acta Part A:Mol. Biomol. Spectrosc., 2019, 216:303-309.
CHANDRA S, PRADHAN S, MITRA S, et al.. High throughput electron transfer from carbon dots to chloroplast:a rationale of enhanced photosynthesis[J].Nanoscale, 2014, 6(7):3647-3655.
WANG J G, WANG J C, MU X J. Physical mechanism of concentration-dependent fluorescence resonance energy transfer[J].Spectrochim. Acta Part A:Mol. Biomol. Spectrosc., 2020, 231:118143.
ZHANG Y H, NIE Y F, ZHU R F, et al.. Nitrogen doped carbon dots for turn-off fluorescent detection of alkaline phosphatase activity based on inner filter effect[J].Talanta, 2019, 204:74-81.
LAVINSKY A O, DETMANN K C, REIS J V, et al.. Silicon improves rice grain yield and photosynthesis specifically when supplied during the reproductive growth stage[J].J. Plant Physiol., 2016, 206:125-132.
0
浏览量
312
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构