浏览全部资源
扫码关注微信
东南大学 电子科学与工程学院, 生物科学与医学工程学院, 江苏 南京 211189
[ "夏伟(2001-),男,江苏南京人,硕士研究生,2023年于东南大学获得学士学位,主要从事半导体微纳光电器件与传感的相关研究。" ]
[ "石增良(1979-),男,山东临沂人,博士,副教授,2008年于吉林大学获得博士学位,主要从事半导体微纳光电器件与传感的相关研究。" ]
[ "徐春祥(1965-),男,江苏兴化人,博士,教授,1997年于中国科学院长春物理研究所获得博士学位,主要从事新型微纳光电器件与超快光谱技术的相关研究。" ]
收稿日期:2024-10-20,
修回日期:2024-10-29,
纸质出版日期:2025-02-25
移动端阅览
夏伟,邓麦雨,雍蓉蓉等.回音壁微腔协同的表面增强拉曼散射生物传感[J].发光学报,2025,46(02):229-244.
XIA Wei,DENG Maiyu,YONG Rongrong,et al.SERS Biosensing Synergistically Enhanced by Whispering Gallery Mode Microcavity[J].Chinese Journal of Luminescence,2025,46(02):229-244.
夏伟,邓麦雨,雍蓉蓉等.回音壁微腔协同的表面增强拉曼散射生物传感[J].发光学报,2025,46(02):229-244. DOI: 10.37188/CJL.20240269. CSTR: 32170. 14. CJL. 20240269.
XIA Wei,DENG Maiyu,YONG Rongrong,et al.SERS Biosensing Synergistically Enhanced by Whispering Gallery Mode Microcavity[J].Chinese Journal of Luminescence,2025,46(02):229-244. DOI: 10.37188/CJL.20240269. CSTR: 32170. 14. CJL. 20240269.
表面增强拉曼散射(Surface enhanced Raman scattering, SERS)技术是一种具有高灵敏度、高选择性且无损的光谱分析方法,有效解决了拉曼散射信号微弱的问题。经过数十年的发展,SERS生物传感技术在增强机理的揭示、增强材料的开发、高性能基底的制备以及新型SERS检测技术和设备的开发等方面取得了显著进展。然而,设计与制备高性能SERS基底以及开发新型检测技术仍然是实现定量生物传感和复杂物质鉴别的关键问题。回音壁模(Whispering gallery mode, WGM)光学微腔是增强光与物质相互作用的重要技术手段,结合SERS技术,能充分发挥WGM和SERS效应的协同作用优势,有望实现拉曼散射信号的双重增强。本文从电磁场增强、化学增强及协同增强三个方面阐述了SERS的增强原理,主要以氧化锌(ZnO)材料为例分析了半导体及金属⁃半导体复合体系的SERS增强机制,探讨了光学谐振腔体系中的SERS协同作用,并综述近年来WGM微腔协同的SERS生物传感方面的最新研究进展。
Surface-enhanced Raman scattering (SERS) technology is a highly sensitive, selective, and non-destructive spectroscopic analysis method that effectively addresses the challenge of weak Raman scattering signals. Over the past few decades, significant progress has been made in SERS biosensing technology, including the understanding of enhancement mechanisms, development of enhancement materials, preparation of high-performance substrates, and the creation of novel SERS detection technologies and equipment. However, the design and preparation of high-performance SERS substrates and the development of novel SERS detection technologies remain necessary to achieve quantitative biosensing and the identification of complex substances. Whispering gallery mode (WGM) optical microcavities can significantly enhance the interaction between the light field and matter within the cavity. The combination of WGM microcavity and SERS technology can give full play to the synergistic coupling advantages of WGM effect and SERS effect, and it is expected to realize the double enhancement of Raman scattering. In this paper, the SERS enhanced mechanism was elaborated from electromagnetic field enhancement, chemical enhancement and their synergistic enhancement. The SERS enhanced mechanism of semiconductor materials and metal-semiconductor composite system was analyzed with zinc oxide (ZnO) as the representative. The SERS synergism in optical resonator system was discussed, and the recent research progress of WGM microcavity in synergistically enhancing SERS biosensing was reviewed.
FLEISCHMANN M , HENDRA P J , MCQUILLAN A J . Raman spectra of pyridine adsorbed at a silver electrode [J]. Chem. Phys. Lett. , 1974 , 26 ( 2 ): 163 - 166 . doi: 10.1016/0009-2614(74)85388-1 http://dx.doi.org/10.1016/0009-2614(74)85388-1
JEANMAIRE D L , VAN DUYNE R P . Surface raman spectroelectrochemistry: part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode [J]. J. Electroanal. Chem. Interfacial Electrochem. , 1977 , 84 ( 1 ): 1 - 20 . doi: 10.1016/0368-1874(77)80399-7 http://dx.doi.org/10.1016/0368-1874(77)80399-7
ALBRECHT M G , CREIGHTON J A . Anomalously intense Raman spectra of pyridine at a silver electrode [J]. J. Am. Chem. Soc. , 1977 , 99 ( 15 ): 5215 - 5217 . doi: 10.1021/ja00457a071 http://dx.doi.org/10.1021/ja00457a071
XU Y , ZHONG P , JIANG A M , et al . Raman spectroscopy coupled with chemometrics for food authentication: a review [J]. TrAC Trends Anal. Chem. , 2020 , 131 : 116017 . doi: 10.1016/j.trac.2020.116017 http://dx.doi.org/10.1016/j.trac.2020.116017
ZHENG J , JIAO A L , YANG R H , et al . Fabricating a reversible and regenerable raman-active substrate with a biomolecule-controlled DNA nanomachine [J]. J. Am. Chem. Soc. , 2012 , 134 ( 49 ): 19957 - 19960 . doi: 10.1021/ja308875r http://dx.doi.org/10.1021/ja308875r
LIANG L J , HUANG D S , WANG H L , et al . In situ surface-enhanced Raman scattering spectroscopy exploring molecular changes of drug-treated cancer cell nucleus [J]. Anal. Chem. , 2015 , 87 ( 4 ): 2504 - 2510 . doi: 10.1021/ac504550w http://dx.doi.org/10.1021/ac504550w
ARNOLD S , KHOSHSIMA M , TERAOKA I , et al . Shift of whispering-gallery modes in microspheres by protein adsorption [J]. Opt. Lett. , 2003 , 28 ( 4 ): 272 - 274 . doi: 10.1364/ol.28.000272 http://dx.doi.org/10.1364/ol.28.000272
VOLLMER F , ARNOLD S . Whispering-gallery-mode biosensing: label-free detection down to single molecules [J]. Nat. Methods , 2008 , 5 ( 7 ): 591 - 596 . doi: 10.1038/nmeth.1221 http://dx.doi.org/10.1038/nmeth.1221
YU D S , HUMAR M , MESERVE K , et al . Whispering-gallery-mode sensors for biological and physical sensing [J]. Nat. Rev. Methods Prim. , 2021 , 1 ( 1 ): 83 . doi: 10.1038/s43586-021-00079-2 http://dx.doi.org/10.1038/s43586-021-00079-2
MOSKOVITS M . Surface-enhanced Raman spectroscopy: a brief retrospective [J]. J. Raman Spectrosc. , 2005 , 36 ( 6-7 ): 485 - 496 . doi: 10.1002/jrs.1362 http://dx.doi.org/10.1002/jrs.1362
CAMPION A , KAMBHAMPATI P . Surface-enhanced Raman scattering [J]. Chem. Soc. Rev. , 1998 , 27 ( 4 ): 241 - 250 . doi: 10.1039/a827241z http://dx.doi.org/10.1039/a827241z
HAYNES C L , MCFARLAND A D , VAN DUYNE R P . Surface-enhanced Raman spectroscopy [J]. Anal. Chem. , 2005 , 77 ( 17 ): 338A - 346A . doi: 10.1021/ac053456d http://dx.doi.org/10.1021/ac053456d
DING S Y , YI J , LI J F , et al . Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials [J]. Nat. Rev. Mater. , 2016 , 1 ( 6 ): 16021 . doi: 10.1038/natrevmats.2016.21 http://dx.doi.org/10.1038/natrevmats.2016.21
DING S Y , YOU E M , TIAN Z Q , et al . Electromagnetic theories of surface-enhanced Raman spectroscopy [J]. Chem. Soc. Rev. , 2017 , 46 ( 13 ): 4042 - 4076 . doi: 10.1039/c7cs00238f http://dx.doi.org/10.1039/c7cs00238f
MAYER K M , HAFNER J H . Localized surface plasmon resonance sensors [J]. Chem. Rev. , 2011 , 111 ( 6 ): 3828 - 3857 . doi: 10.1021/cr100313v http://dx.doi.org/10.1021/cr100313v
SAVIÑON-FLORES F , MÉNDEZ E , LÓPEZ-CASTAÑOS M , et al . A review on SERS-based detection of human virus infections: influenza and coronavirus [J]. Biosensors , 2021 , 11 ( 3 ): 66 . doi: 10.3390/bios11030066 http://dx.doi.org/10.3390/bios11030066
陈韶云 , 张行颖 , 刘奔 , 等 . 表面增强拉曼光谱基底的种类及其应用进展 [J]. 分析化学 , 2024 , 52 ( 7 ): 910 - 924 .
CHEN S Y , ZHANG X Y , LIU B , et al . Classification and application of surface-enhanced Raman spectroscopy substrates [J]. Chin. J. Anal. Chem. , 2024 , 52 ( 7 ): 910 - 924 . (in Chinese)
DONG J , ZHAO X , GAO W , et al . Nanoscale vertical arrays of gold nanorods by self-assembly: physical mechanism and application [J]. Nanoscale Res. Lett. , 2019 , 14 ( 1 ): 118 . doi: 10.1186/s11671-019-2946-6 http://dx.doi.org/10.1186/s11671-019-2946-6
XU R X , YAN L T , ZHU Y Y , et al . Modification and SERS optimization of triangular Ag nanoplates [J]. Plasmonics , 2020 , 15 ( 6 ): 2061 - 2069 . doi: 10.1007/s11468-020-01232-5 http://dx.doi.org/10.1007/s11468-020-01232-5
WU Y , WANG X X , WEN X L , et al . Surface-enhanced Raman scattering based on hybrid surface plasmon excited by Au nanodisk and Au film coupling structure [J]. Phys. Lett. A , 2020 , 384 ( 23 ): 126544 . doi: 10.1016/j.physleta.2020.126544 http://dx.doi.org/10.1016/j.physleta.2020.126544
LI H Z , YANG Q , HOU J , et al . Bioinspired micropatterned superhydrophilic Au-areoles for surface-enhanced Raman scattering (SERS) trace detection [J]. Adv. Funct. Mater. , 2018 , 28 ( 21 ): 1800448 . doi: 10.1002/adfm.201870144 http://dx.doi.org/10.1002/adfm.201870144
HE J , WEI Q L , WANG S J , et al . Bioinspired protein corona strategy enhanced biocompatibility of Ag-hybrid hollow Au nanoshells for surface-enhanced Raman scattering imaging and on-demand activation tumor-phototherapy [J]. Biomaterials , 2021 , 271 : 120734 . doi: 10.1016/j.biomaterials.2021.120734 http://dx.doi.org/10.1016/j.biomaterials.2021.120734
MARTINS N C T , FATEIXA S , FERNANDES T , et al . Inkjet printing of Ag and polystyrene nanoparticle emulsions for the one-step fabrication of hydrophobic paper-based surface-enhanced Raman scattering substrates [J]. ACS Appl. Nano Mater. , 2021 , 4 ( 5 ): 4484 - 4495 . doi: 10.1021/acsanm.1c00112 http://dx.doi.org/10.1021/acsanm.1c00112
YANG L L , PENG Y S , YANG Y , et al . A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect [J]. Adv. Sci. , 2019 , 6 ( 12 ): 1900310 . doi: 10.1002/advs.201970070 http://dx.doi.org/10.1002/advs.201970070
STILES P L , DIERINGER J A , SHAH N C , et al . Surface-enhanced Raman spectroscopy [J]. Annu. Rev. Anal. Chem. , 2008 , 1 : 601 - 626 . doi: 10.1146/annurev.anchem.1.031207.112814 http://dx.doi.org/10.1146/annurev.anchem.1.031207.112814
XIE W , QIU P H , MAO C B . Bio-imaging, detection and analysis by using nanostructures as SERS substrates [J]. J. Mater. Chem. , 2011 , 21 ( 14 ): 5190 - 5202 . doi: 10.1039/c0jm03301d http://dx.doi.org/10.1039/c0jm03301d
WU D Y , LIU X M , DUAN S , et al . Chemical enhancement effects in SERS spectra: a quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals [J]. J. Phys. Chem. C , 2008 , 112 ( 11 ): 4195 - 4204 . doi: 10.1021/jp0760962 http://dx.doi.org/10.1021/jp0760962
LIU Y P , LU Z W , ZHU H B , et al . Characterization of a chloride-activated surface complex and corresponding enhancement mechanism by SERS saturation effect [J]. J. Phys. Chem. C , 2017 , 121 ( 1 ): 950 - 957 . doi: 10.1021/acs.jpcc.6b11701 http://dx.doi.org/10.1021/acs.jpcc.6b11701
YAMADA H , YAMAMOTO Y . Surface enhanced Raman scattering (SERS) of chemisorbed species on various kinds of metals and semiconductors [J]. Surf. Sci. , 1983 , 134 ( 1 ): 71 - 90 . doi: 10.1016/0039-6028(83)90312-6 http://dx.doi.org/10.1016/0039-6028(83)90312-6
HAYASHI S , KOH R , ICHIYAMA Y , et al . Evidence for surface-enhanced Raman scattering on nonmetallic surfaces: copper phthalocyanine molecules on GaP small particles [J]. Phys. Rev. Lett. , 1988 , 60 ( 11 ): 1085 - 1088 . doi: 10.1103/physrevlett.60.1085 http://dx.doi.org/10.1103/physrevlett.60.1085
FUJISAWA J I . Definitive assignment and mechanistic study of interfacial charge-transfer transitions between ZnO and benzenethiol [J]. Chem. Phys. Lett. , 2021 , 778 : 138774 . doi: 10.1016/j.cplett.2021.138774 http://dx.doi.org/10.1016/j.cplett.2021.138774
ZHANG H N , HUANG S Q , YANG X , et al . A SERS biosensor constructed by calcined ZnO substrate with high-efficiency charge transfer for sensitive detection of Pb 2+ [J]. Sens. Actuators B: Chem. , 2021 , 343 : 130142 . doi: 10.1016/j.snb.2021.130142 http://dx.doi.org/10.1016/j.snb.2021.130142
PHAM T T H , VU X H , TRANG T T , et al . Enhance Raman scattering for probe methylene blue molecules adsorbed on ZnO microstructures due to charge transfer processes [J]. Opt. Mater. , 2021 , 120 : 111460 . doi: 10.1016/j.optmat.2021.111460 http://dx.doi.org/10.1016/j.optmat.2021.111460
倪宇欣 , 张晨杰 , 袁亚仙 , 等 . 纳米ZnO的表面增强拉曼散射效应来源研究 [J]. 化学学报 , 2019 , 77 ( 7 ): 641 - 646 . doi: 10.6023/a19040156 http://dx.doi.org/10.6023/a19040156
NI Y X , ZHANG C J , YUAN Y X , et al . Determination on origination of surface enhanced Raman scattering effect on nano ZnO substrate [J]. Acta Chim. Sinica , 2019 , 77 ( 7 ): 641 - 646 (in Chinese) . doi: 10.6023/a19040156 http://dx.doi.org/10.6023/a19040156
HAN X X , JI W , ZHAO B , et al . Semiconductor-enhanced Raman scattering: active nanomaterials and applications [J]. Nanoscale , 2017 , 9 ( 15 ): 4847 - 4861 . doi: 10.1039/c6nr08693d http://dx.doi.org/10.1039/c6nr08693d
JIANG X , LI X L , JIA X F , et al . Surface-enhanced Raman scattering from synergistic contribution of metal and semiconductor in TiO 2 /MBA/Ag(Au) and Ag(Au)/MBA/TiO 2 assemblies [J]. J. Phys. Chem. C , 2012 , 116 ( 27 ): 14650 - 14655 . doi: 10.1021/jp302139e http://dx.doi.org/10.1021/jp302139e
JI W , XUE X X , RUAN W D , et al . Scanned chemical enhancement of surface-enhanced Raman scattering using a charge-transfer complex [J]. Chem. Commun. , 2011 , 47 ( 8 ): 2426 - 2428 . doi: 10.1039/c0cc03697h http://dx.doi.org/10.1039/c0cc03697h
MAO Z , SONG W , XUE X X , et al . Multiphonon resonant Raman scattering and photoinduced charge-transfer effects at ZnO-molecule interfaces [J]. J. Phys. Chem. C , 2012 , 116 ( 51 ): 26908 - 26918 . doi: 10.1021/jp3092573 http://dx.doi.org/10.1021/jp3092573
BEN-JABER S , PEVELER W J , QUESADA-CABRERA R , et al . Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules [J]. Nat. Commun. , 2016 , 7 : 12189 . doi: 10.1038/ncomms12189 http://dx.doi.org/10.1038/ncomms12189
CUI S Y , DAI Z G , TIAN Q Y , et al . Wetting properties and SERS applications of ZnO/Ag nanowire arrays patterned by a screen printing method [J]. J. Mater. Chem. C , 2016 , 4 ( 26 ): 6371 - 6379 . doi: 10.1039/c6tc00714g http://dx.doi.org/10.1039/c6tc00714g
WANG Z W , MENG G W , HUANG Z L , et al . Ag-nanoparticle-decorated porous ZnO-nanosheets grafted on a carbon fiber cloth as effective SERS substrates [J]. Nanoscale , 2014 , 6 ( 24 ): 15280 - 15285 . doi: 10.1039/c4nr03398a http://dx.doi.org/10.1039/c4nr03398a
TAO Q , LI S , MA C Y , et al . A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays [J]. Dalton Trans. , 2015 , 44 ( 7 ): 3447 - 3453 . doi: 10.1039/c4dt03596h http://dx.doi.org/10.1039/c4dt03596h
PICCIOLINI S , CASTAGNETTI N , VANNA R , et al . Branched gold nanoparticles on ZnO 3D architecture as biomedical SERS sensors [J]. RSC Adv. , 2015 , 5 ( 113 ): 93644 - 93651 . doi: 10.1039/c5ra13280k http://dx.doi.org/10.1039/c5ra13280k
HUANG C Y , XU C X , LU J F , et al . 3D Ag/ZnO hybrids for sensitive surface-enhanced Raman scattering detection [J]. Appl. Surf. Sci. , 2016 , 365 : 291 - 295 . doi: 10.1016/j.apsusc.2016.01.026 http://dx.doi.org/10.1016/j.apsusc.2016.01.026
POLAVARAPU L , PÉREZ-JUSTE J , XU Q H , et al . Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles [J]. J. Mater. Chem. C , 2014 , 2 ( 36 ): 7460 - 7476 . doi: 10.1039/c4tc01142b http://dx.doi.org/10.1039/c4tc01142b
POLAVARAPU L , MOURDIKOUDIS S , PASTORIZA-SATONS I , et al . Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity [J]. CrystEngComm , 2015 , 17 ( 20 ): 3727 - 3762 . doi: 10.1039/c5ce00112a http://dx.doi.org/10.1039/c5ce00112a
HE X , YUE C , ZHANG Y S , et al . Multi-hot spot configuration on urchin-like Ag nanoparticle/ZnO hollow nanosphere arrays for highly sensitive SERS [J]. J. Mater. Chem. A , 2013 , 1 ( 47 ): 15010 - 15015 . doi: 10.1039/c3ta13450d http://dx.doi.org/10.1039/c3ta13450d
XU J Q , DUO H H , ZHANG Y G , et al . Photochemical synthesis of shape-controlled nanostructured gold on zinc oxide nanorods as photocatalytically renewable sensors [J]. Anal. Chem. , 2016 , 88 ( 7 ): 3789 - 3795 . doi: 10.1021/acs.analchem.5b04810 http://dx.doi.org/10.1021/acs.analchem.5b04810
LIU Y , LI R R , ZHOU N , et al . Recyclable 3D SERS devices based on ZnO nanorod-grafted nanowire forests for biochemical sensing [J]. Appl. Surf. Sci. , 2022 , 582 : 152336 . doi: 10.1016/j.apsusc.2021.152336 http://dx.doi.org/10.1016/j.apsusc.2021.152336
LEE Y , LEE J , LEE T K , et al . Particle-on-film gap plasmons on antireflective ZnO nanocone arrays for molecular-level surface-enhanced Raman scattering sensors [J]. ACS Appl. Mater. Interfaces , 2015 , 7 ( 48 ): 26421 - 26429 . doi: 10.1021/acsami.5b09947 http://dx.doi.org/10.1021/acsami.5b09947
LIU Y J , XU C X , LU J F , ZHU Z , et al . Template-free synthesis of porous ZnO/Ag microspheres as recyclable and ultra-sensitive SERS substrates [J]. Appl. Surf. Sci. , 2018 , 427 : 830 - 836 . doi: 10.1016/j.apsusc.2017.07.229 http://dx.doi.org/10.1016/j.apsusc.2017.07.229
ALESSANDRI I . Enhancing Raman scattering without plasmons: unprecedented sensitivity achieved by TiO 2 shell-based resonators [J]. J. Am. Chem. Soc. , 2013 , 135 ( 15 ): 5541 - 5544 . doi: 10.1021/ja401666p http://dx.doi.org/10.1021/ja401666p
QI D Y , LU L J , WANG L Z , et al . Improved SERS sensitivity on plasmon-free TiO 2 photonic microarray by enhancing light-matter coupling [J]. J. Am. Chem. Soc. , 2014 , 136 ( 28 ): 9886 - 9889 . doi: 10.1021/ja5052632 http://dx.doi.org/10.1021/ja5052632
LI F F , MU X Y , TANG X Q , et al . Semiconductor SERS on colourful substrates with Fabry-Pérot cavities [J]. Angew. Chem. , 2023 , 135 ( 12 ): e202218055 . doi: 10.1002/anie.202218055 http://dx.doi.org/10.1002/anie.202218055
LI X X , SHANG Y , LIN J , et al . Temperature-induced stacking to create Cu 2 O concave sphere for light trapping capable of ultrasensitive single-particle surface-enhanced Raman scattering [J]. Adv. Funct. Mater. , 2018 , 28 ( 33 ): 1801868 . doi: 10.1002/adfm.201801868 http://dx.doi.org/10.1002/adfm.201801868
TIAN Z , ZHANG Z H . Photonic-plasmonic resonator for SERS biodetection [J]. Analys , 2024 , 149 ( 11 ): 3123 - 3130 . doi: 10.1039/d4an00384e http://dx.doi.org/10.1039/d4an00384e
TIAN Z , XU D W , YANG S B , et al . Highly ordered nanocavity as photonic-plasmonic-polaritonic resonator for single molecule miRNA SERS detection [J]. Biosens. Bioelectron. , 2024 , 254 : 116231 . doi: 10.1016/j.bios.2024.116231 http://dx.doi.org/10.1016/j.bios.2024.116231
FOREMAN M R , SWAIM J D , VOLLMER F . Whispering gallery mode sensors [J]. Adv. Opt. Photonics , 2015 , 7 ( 2 ): 168 - 240 . doi: 10.1364/aop.7.000168 http://dx.doi.org/10.1364/aop.7.000168
HEYLMAN K D , KNAPPER K A , HORAK E H , et al . Optical microresonators for sensing and transduction: a materials perspective [J]. Adv. Mater. , 2017 , 29 ( 30 ): 1700037 . doi: 10.1002/adma.201700037 http://dx.doi.org/10.1002/adma.201700037
KIM E , BAASKE M D , VOLLMER F . Towards next-generation label-free biosensors: recent advances in whispering gallery mode sensors [J]. Lab Chip , 2017 , 17 ( 7 ): 1190 - 1205 . doi: 10.1039/c6lc01595f http://dx.doi.org/10.1039/c6lc01595f
CHEN Y P , YIN Y , MA L B , et al . Recent progress on optoplasmonic whispering-gallery-mode microcavities [J]. Adv. Opt. Mater. , 2021 , 9 ( 12 ): 2100143 . doi: 10.1002/adom.202100143 http://dx.doi.org/10.1002/adom.202100143
JIANG X F , QAVI A J , HUANG S H , et al . Whispering-gallery sensors [J]. Matter , 2020 , 3 ( 2 ): 371 - 392 . doi: 10.1016/j.matt.2020.07.008 http://dx.doi.org/10.1016/j.matt.2020.07.008
VOLLMER F , BRAUN D , LIBCHABER A , et al . Protein detection by optical shift of a resonant microcavity [J]. Appl. Phys. Lett. , 2002 , 80 ( 21 ): 4057 - 4059 . doi: 10.1063/1.1482797 http://dx.doi.org/10.1063/1.1482797
VOLLMER F , ARNOLD S , KENG D . Single virus detection from the reactive shift of a whispering-gallery mode [J]. Proc. Natl. Acad. Sci. USA , 2008 , 105 ( 52 ): 20701 - 20704 . doi: 10.1073/pnas.0808988106 http://dx.doi.org/10.1073/pnas.0808988106
ZHU J G , OZDEMIR S K , XIAO Y F , et al . On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator [J]. Nat. Photonics , 2010 , 4 ( 1 ): 46 - 49 . doi: 10.1038/nphoton.2009.237 http://dx.doi.org/10.1038/nphoton.2009.237
LU T , LEE H , CHEN T , et al . High sensitivity nanoparticle detection using optical microcavities [J]. Proc. Natl. Acad. Sci. USA , 2011 , 108 ( 15 ): 5976 - 5979 . doi: 10.1073/pnas.1017962108 http://dx.doi.org/10.1073/pnas.1017962108
SHAO L B , JIANG X F , YU X C , et al . Detection of single nanoparticles and lentiviruses using microcavity resonance broadening [J]. Adv. Mater. , 2013 , 25 ( 39 ): 5616 - 5620 . doi: 10.1002/adma201302572 http://dx.doi.org/10.1002/adma201302572
WANG Z Y H , LIU Y Z , GONG C Y , et al . Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay [J]. PhotoniX , 2021 , 2 ( 1 ): 18 . doi: 10.1186/s43074-021-00041-1 http://dx.doi.org/10.1186/s43074-021-00041-1
XAVIER J , VINCENT S , MEDER F , et al . Advances in optoplasmonic sensors-combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles [J]. Nanophotonics , 2018 , 7 ( 1 ): 1 - 38 . doi: 10.1515/nanoph-2017-0064 http://dx.doi.org/10.1515/nanoph-2017-0064
BAASKE M D , VOLLMER F . Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution [J]. Nat. Photonics , 2016 , 10 ( 11 ): 733 – 739 . doi: 10.1038/nphoton.2016.177 http://dx.doi.org/10.1038/nphoton.2016.177
HOUGHTON M C , KASHANIAN S V , DERRIEN T L , et al . Whispering-gallery mode optoplasmonic microcavities: from advanced single-molecule sensors and microlasers to applications in synthetic biology [J]. ACS Photonics , 2024 , 11 ( 3 ): 892 - 903 . doi: 10.1021/acsphotonics.3c01570 http://dx.doi.org/10.1021/acsphotonics.3c01570
SANTIAGO-CORDOBA M A , BORISKINA S V , VOLLMER F , et al . Nanoparticle-based protein detection by optical shift of a resonant microcavity [J]. App. Phy. Lett. , 2011 , 99 ( 7 ): 073701 . doi: 10.1063/1.3599706 http://dx.doi.org/10.1063/1.3599706
KIM E , BAASKE M D , VOLLMER F . In situ observation of single-molecule surface reactions from low to high affinities [J]. Adv. Mater. , 2016 , 28 ( 45 ): 9941 - 9948 . doi: 10.1002/adma.201603153 http://dx.doi.org/10.1002/adma.201603153
SUBRAMANIAN S , WU H Y , CONSTANT T , et al . Label-free optical single-molecule micro-and nanosensors [J]. Adv. Mater. , 2018 , 30 ( 51 ): 1801246 . doi: 10.1002/adma.201801246 http://dx.doi.org/10.1002/adma.201801246
FAN X C , WANG R , LI M Z , et al . High-specificity molecular sensing on an individual whispering-gallery-mode cavity: coupling-enhanced Raman scattering by photoinduced charge transfer and cavity effects [J]. Nanoscale Horiz. , 2023 , 8 ( 2 ): 195 - 201 . doi: 10.1039/d2nh00450j http://dx.doi.org/10.1039/d2nh00450j
LU J F , XU C X , NAN H Y , et al . SERS-active ZnO/Ag hybrid WGM microcavity for ultrasensitive dopamine detection [J]. Appl. Phys. Lett. , 2016 , 109 ( 7 ): 073701 . doi: 10.1063/1.4961116 http://dx.doi.org/10.1063/1.4961116
ZHU Q X , XU C X , WANG D L , et al . Femtomolar response of a plasmon-coupled ZnO/graphene/silver hybrid whispering-gallery mode microcavity for SERS sensing [J]. J. Mater. Chem. C , 2019 , 7 ( 9 ): 2710 - 2716 . doi: 10.1039/c8tc06305b http://dx.doi.org/10.1039/c8tc06305b
单雅琦 . 光学多模态探针的设计合成及食源性致病菌检测 [D]. 南京 : 东南大学 , 2019 .
SHAN Y Q . Design and Synthesis of Optical Multimodal Probes and Detection of Food Borne Pathogenic Bacteria [D]. Nanjing : Southeast University , 2019 . (in Chinese)
LI J T , LIN Y , LU J F , et al . Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance [J]. ACS Nano , 2015 , 9 ( 7 ): 6794 - 6800 . doi: 10.1021/acsnano.5b01319 http://dx.doi.org/10.1021/acsnano.5b01319
LEI M L , XU C X , SHAN Y Q , et al . Plasmon-coupled microcavity aptasensors for visual and ultra-sensitive simultaneous detection of Staphylococcus aureus and Escherichia coli [J]. Anal. Bioanal. Chem. , 2020 , 412 ( 29 ): 8117 - 8126 . doi: 10.1007/s00216-020-02942-9 http://dx.doi.org/10.1007/s00216-020-02942-9
WANG J J , XU C X , LEI M L , et al . Microcavity-based SERS chip for ultrasensitive immune detection of cardiac biomarkers [J]. Microchem. J. , 2021 , 171 : 106875 . doi: 10.1016/j.microc.2021.106875 http://dx.doi.org/10.1016/j.microc.2021.106875
SUN J L , WANG R , WANG L , et al . Visual/quantitative SERS biosensing chip based on Au-decorated polystyrene sphere microcavity arrays [J]. Sens. Actuators B: Chem. , 2023 , 388 : 133869 . doi: 10.1016/j.snb.2023.133869 http://dx.doi.org/10.1016/j.snb.2023.133869
SUN J L , SHI Z L , WANG L , et al . Construction of a microcavity-based microfluidic chip with simultaneous SERS quantification of dual biomarkers for early diagnosis of Alzheimer’s disease [J]. Talanta , 2023 , 261 : 124677 . doi: 10.1016/j.talanta.2023.124677 http://dx.doi.org/10.1016/j.talanta.2023.124677
SUN J L , MAO W Q , XIA C S , et al . Plasmon-coupled GaN microcavity for WGM lasing and label-free SERS sensing of biofluids [J]. Adv. Opt. Mater. , 2024 , 12 ( 7 ): 2301989 . doi: 10.1002/adom.202301989 http://dx.doi.org/10.1002/adom.202301989
WANG W A , ZHANG J H , YE P , et al . Protein aggregation monitoring in microdisk optofluidic sensor through microcavity enhanced Raman scattering [J]. Colloids Surfaces A: Physicochem. Eng. Aspects , 2023 , 679 : 132561 . doi: 10.1016/j.colsurfa.2023.132561 http://dx.doi.org/10.1016/j.colsurfa.2023.132561
WANG L , SUN J L , WANG X X , et al . Visual and quantitative lateral flow immunoassay based on Au@PS SERS tags for multiplex cardiac biomarkers [J]. Talanta , 2024 , 274 : 126040 . doi: 10.1016/j.talanta.2024.126040 http://dx.doi.org/10.1016/j.talanta.2024.126040
MAO W B , LI Y H , JIANG X F , et al . A whispering-gallery scanning microprobe for Raman spectroscopy and imaging [J]. Light Sci. Appl. , 2023 , 12 ( 1 ): 247 . doi: 10.1038/s41377-023-01276-2 http://dx.doi.org/10.1038/s41377-023-01276-2
0
浏览量
122
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构