1.辽宁科技大学化学工程学院, 辽宁 鞍山 114051
2.河北工业职业技术大学, 河北 石家庄 050091
[ "闫立东,男,辽宁鞍山人,讲师,博士研究生,2023年6月获辽宁科技大学化学工程与技术博士学位,主要研究领域为洁净煤技术、煤基碳量子点合成与应用。E-mail: Ustl.cn@163.com" ]
[ "朱亚明,男,辽宁鞍山人,副教授,博士研究生,博士生导师。2017年7月获辽宁科技大学化学工程与技术博士学位,主要从事煤沥青基炭微观结构的调控、沥青基炭功能材料和复合材料的制备与应用研究。E-mail: zhuyaming0504@163.com" ]
[ "赵雪飞,男,辽宁鞍山人,教授,博士研究生,博士生导师。2011年11月获大连理工大学化学工艺博士学位,主要从事煤焦油深加工及煤基新型炭材料的制备与应用研究。E-mail: zhao_xuefei@163.com" ]
扫 描 看 全 文
闫立东,胡朝帅,程俊霞等.煤基碳量子点制备及对环境水中Cr(Ⅵ)的测定[J].发光学报,
YAN Lidong,HU Chaoshuai,Cheng Junxia,et al.Preparation of coal-based carbon quantum dots and determination of Cr(Ⅵ) in environmental water[J].Chinese Journal of Luminescence,
闫立东,胡朝帅,程俊霞等.煤基碳量子点制备及对环境水中Cr(Ⅵ)的测定[J].发光学报, DOI:10.37188/CJL.20230244
YAN Lidong,HU Chaoshuai,Cheng Junxia,et al.Preparation of coal-based carbon quantum dots and determination of Cr(Ⅵ) in environmental water[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230244
以海拉尔褐煤热解萃取物为碳源,HNO,3,为氮源,通过一步水热法合成了氮掺杂煤基碳量子点(N-CQDs),将N-CQDs作为荧光探针,通过荧光猝灭法可选择性识别环境水中Cr(VI)。利用透射电子显微镜、傅里叶变换红外光谱仪、荧光分光光度计等手段对N-CQDs的形貌、结构、组成和光学性质进行表征,结果表明:该N-CQDs在水中具有良好的分散性,平均粒径为2.01 nm,表面含有丰富的羟基、羧基、环氧基和硝基等含氧、含氮官能团。N-CQD的量子产率(QY)为1.36%,在340 nm激发光照射下发出黄绿色荧光(556 nm),且发射波长不依赖于激发波长(280~440 nm)。N-CQDs的pH值在4~11之间、低氯化钠浓度及长时间存放情况下,仍表现出优异的光学稳定性。分析多种阴离子对其荧光强度的猝灭影响,当Cr(VI)在0~200时,N-CQD荧光强度(F,0,/F)与Cr(VI)浓度呈现良好的线性关系,检测限为0.56 μM,实际水样的检测结果与ICP-OES检测结果相一致。
Nitrogen-doped carbon quantum dots (N-CQDs) were synthesized by a one-step hydrothermal method using Hailaer brown coal pyrolytic extract and nitric acid as carbon, nitrogen sources. The fluorescent probe based on N-CQDs was developed for the recognition of Cr(VI). The morphology, structure, composition and optical properties of N-CQDs were characterized by TEM, FT-IR, Raman, XPS analysis, fluorescence spectra, and UV–vis absorption spectra, respectively. The results show that the N-CQDs exhibits a good dispersion with the particle size of about 2.01 nm in water. Lots of nitrogen- and oxygen-containing groups of hydroxyl, epoxy, carboxyl and nitro groups were found on the surface. The as-prepared N-CQDs emits yellow-green photoluminescence under 340 nm UV light with an absolute quantum yield of 1.26%. The fluorescence spectra shows that the maximum excitation wavelength of N-CQDs is 340 nm and the maximum emission wavelength is 556 nm. The fluorescence emission is non-excitation dependent (280~440 nm). In addition, N-CQDs exhibits excellent optical properties in the pH range between 4 and 11 as well as at a low concentration of NaCl and KCl. The quenching effect of various anions on their fluorescence intensity was analyzed. The linear relationship between Cr(VI) and N-CQDs (F,0,/F) fluorescence quenching was found at range of 0~200 μM with the detection limit of 0.56 μM, and the detection results are consistent with the ICP-OES method.
碳量子点Cr(VI)离子检测
carbon Quantum DotsCr(Ⅵ)ion detection
WANG B, LIN Y, TAN H, et al. One-pot synthesis of N-doped carbon dots by pyrolyzing the gel composed of ethanolamine and 1-carboxyethyl-3-methylimidazolium chloride and their selective fluorescence sensing for Cr (VI) ions[J]. Analyst, 2018, 143(8): 1906-1915. doi: 10.1039/c8an00077hhttp://dx.doi.org/10.1039/c8an00077h
GUO H, WU N, XUE R, et al. An Eu (III)-functionalized Sr-based metal-organic framework for fluorometric determination of Cr (III) and Cr (VI) ions[J]. Microchimica Acta, 2020, 187: 1-11. doi: 10.1007/s00604-020-04292-whttp://dx.doi.org/10.1007/s00604-020-04292-w
KHAZAELI S, NEZAMABADI N, RABANI M, et al. A new functionalized resin and its application in flame atomic absorption spectrophotometric determination of trace amounts of heavy metal ions after solid phase extraction in water samples[J]. Microchemical Journal, 2013, 106: 147-153. doi: 10.1016/j.microc.2012.06.002http://dx.doi.org/10.1016/j.microc.2012.06.002
SPANU D, MONTICELLI D, BINDA G, et al. One-minute highly selective Cr (VI) determination at ultra-trace levels: An ICP-MS method based on the on-line trapping of Cr (III)[J]. Journal of Hazardous Materials, 2021, 412: 125280. doi: 10.1016/j.jhazmat.2021.125280http://dx.doi.org/10.1016/j.jhazmat.2021.125280
AGRAWAL K, PATEL K S, SHRIVAS K, et al. On-site determination of tin in geological and water samples using novel organic reagent with iodide[J]. Journal of Hazardous Materials, 2009, 164(1): 95-98. doi: 10.1016/j.jhazmat.2008.07.124http://dx.doi.org/10.1016/j.jhazmat.2008.07.124
ZHENG X C, REN S T, GAI Q X, et al. Carbon dot/carbon nitride composites fluorescent probe for the highly selective detection of Cr (VI) ions[J]. Journal of Photochemistry & Photobiology A: Chemistry, 2020, 400: 112711. doi: 10.1016/j.jphotochem.2020.112711http://dx.doi.org/10.1016/j.jphotochem.2020.112711
HU C S, ZHU Y M, ZHAO X F, et al. On-off-on nanosensors of carbon quantum dots derived from coal tar pitch for the detection of Cu2+, Fe3+, and L-ascorbic acid[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 250: 119325. doi: 10.1016/j.saa.2020.119325http://dx.doi.org/10.1016/j.saa.2020.119325
SONG S, LIANG F, LI M, et al. A label-free nano-probe for sequential and quantitative determination of Cr (VI) and ascorbic acid in real samples based on S and N dual-doped carbon dots[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 215: 58-68. doi: 10.1016/j.saa.2019.02.065http://dx.doi.org/10.1016/j.saa.2019.02.065
XU X, RAY R, GU Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737. doi: 10.1021/ja040082hhttp://dx.doi.org/10.1021/ja040082h
SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24): 7756-7757. doi: 10.1021/ja062677dhttp://dx.doi.org/10.1021/ja062677d
WANG Q J, WANG G L, LIANG X F, et al. Supporting carbon quantum dots on NH2-MIL-125 for enhanced photocatalytic degradation of organic pollutants under a broad spectrum irradiation[J]. Applied Surface Science, 2019, 467: 320-327. doi: 10.1016/j.apsusc.2018.10.165http://dx.doi.org/10.1016/j.apsusc.2018.10.165
ZHAO C, LIAO Z Z, LIU W, et al. Carbon quantum dots modified tubular g-C3N4 with enhanced photocatalytic activity for carbamazepine elimination: mechanisms, degradation pathway and DFT calculation[J]. Journal of Hazardous Materials, 2020, 381: 120957. doi: 10.1016/j.jhazmat.2019.120957http://dx.doi.org/10.1016/j.jhazmat.2019.120957
张艺, 邢晶晶, 孙思佳, 等. 绿色方法合成纳米碳点及对Fe3+的特异性荧光检测[J]. 发光学报, 2020, 41(10): 1249-1254. doi: 10.37188/cjl.20200174http://dx.doi.org/10.37188/cjl.20200174
ZHANG Y, XING J J, SUN S J, et al. Green Synthesis of Carbon Nanodots and Their Application in Specific Fluorescence Detection of Fe3+[J]. Chinese Journal of Luminescence, 2020, 41(10): 1249-1254. doi: 10.37188/cjl.20200174http://dx.doi.org/10.37188/cjl.20200174
POURREZA N, GHOMI M. Green synthesized carbon quantum dots from Prosopis juliflora leaves as a dual off-on fluorescence probe for sensing mercury (II) and chemet drug[J]. Materials Science and Engineering C, 2019, 98: 887-896. doi: 10.1016/j.msec.2018.12.141http://dx.doi.org/10.1016/j.msec.2018.12.141
SABET M, MAHDAVI K. Green synthesis of high photoluminescence nitrogen-doped carbon quantum dots from grass via a simple hydrothermal method for removing organic and inorganic water pollutions[J]. Applied Surface Science, 2019, 463: 283-291. doi: 10.1016/j.apsusc.2018.08.223http://dx.doi.org/10.1016/j.apsusc.2018.08.223
DOU J B, GAN D F, HUANG Q, et al. Functionalization of carbon nanotubes with chitosan based on MALI multicomponent reaction for Cu2+ removal[J]. International Journal of Biological Macromolecules, 2019, 136: 476-485. doi: 10.1016/j.ijbiomac.2019.06.112http://dx.doi.org/10.1016/j.ijbiomac.2019.06.112
SUN H Z, WU P Y. Tuning the functional groups of carbon quantum dots in thin film nanocomposite membranes for nanofiltration[J]. Journal of Membrane Science, 2018, 564: 394-403. doi: 10.1016/j.memsci.2018.07.044http://dx.doi.org/10.1016/j.memsci.2018.07.044
ZHAO D L, CHUNG T S. Applications of carbon quantum dots (CQDs) in membrane technologies: A review[J]. Water Research, 2018, 147: 43-49. doi: 10.1016/j.watres.2018.09.040http://dx.doi.org/10.1016/j.watres.2018.09.040
郭振,振唐玉国,孟凡渝,等. 荧光碳量子点的制备与生物医学应用研究进展[J]. 中国光学(中英文), 2018, 11(3): 431-443. doi: 10.3788/co.20181103.0431http://dx.doi.org/10.3788/co.20181103.0431
GUO Z Z, TANG Y G, MENG F Y, et al. Advances in preparation and biomedical applications of fluorescent carbon quantum dots[J]. Chinese Optics, 2018, 11(3): 431-443. doi: 10.3788/co.20181103.0431http://dx.doi.org/10.3788/co.20181103.0431
何松杰, 张清梅, 张路鹏, 等. pH响应型碳点的荧光机制和生物医学应用[J]. 发光学报, 2022, 43(1): 137-151. doi: 10.37188/CJL.20210307http://dx.doi.org/10.37188/CJL.20210307
He S J, Zhang Q M, Zhang L P, et al. Fluorescence Mechanism and Biomedical Applications of pH-responsive Carbon Dots[J]. Chinese Journal of Luminescence, 2022, 43(1): 137-151. doi: 10.37188/CJL.20210307http://dx.doi.org/10.37188/CJL.20210307
LIU Y S, LI W, WU P, et al. Hydrothermal synthesis of nitrogen and boron co-doped carbon quantum dots for application in acetone and dopamine sensors and multicolor cellular imaging[J]. Sensors and Actuators B: Chemical, 2019, 281: 34-43. doi: 10.1016/j.snb.2018.10.075http://dx.doi.org/10.1016/j.snb.2018.10.075
BALAMURUGAN R, LIU J H, LIU B T. A review of recent developments in fluorescent sensors for the selective detection of palladium ions[J]. Coord. Chem. Rev., 2018, 376: 196-224. doi: 10.1016/j.ccr.2018.07.017http://dx.doi.org/10.1016/j.ccr.2018.07.017
鲁诗言, 于淑娟, 陈国全, 等. 氮、磷掺杂碳点的合成及在Pd2+传感中的应用[J]. 发光学报, 2021, 42(1): 53-60. doi: 10.37188/cjl.20200309http://dx.doi.org/10.37188/cjl.20200309
LU S Y, YU S J, CHEN G Q, et al. Synthesis of Nitrogen and Phosphorus Doped Carbon Dots and Their Application in Pd2+ Sensing[J]. Chinese Journal of Luminescence, 2021, 42(1): 53-60. doi: 10.37188/cjl.20200309http://dx.doi.org/10.37188/cjl.20200309
LI J F, LI P X, WANG D X, et al. One-pot synthesis of aqueous soluble and organic soluble carbon dots and their multi-functional applications[J]. Talanta, 2019, 202: 375-383. doi: 10.1016/j.talanta.2019.05.019http://dx.doi.org/10.1016/j.talanta.2019.05.019
FANG B, WANG P, ZHU Y J, et al. Basophilic green fluorescent carbon nanoparticles derived from benzoxazine for the detection of Cr(VI) in a strongly alkaline environment[J]. Rsc Advances, 2018, 8(14): 7377-7382. doi: 10.1039/c7ra10814ahttp://dx.doi.org/10.1039/c7ra10814a
CHEN J C, LIU J H, LI J Z, et al. One-pot synthesis of nitrogen and sulfur co-doped carbon dots and its application for sensor and multicolor cellular imaging[J]. Journal of Colloid and Interface Science, 2017, 48: 167-174. doi: 10.1016/j.jcis.2016.09.040http://dx.doi.org/10.1016/j.jcis.2016.09.040
QUANG N K, HIEU N N, BAO V V, et al. Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging [J]. New Carbon Materials, 2022, 37(03): 595-602. doi: 10.1016/s1872-5805(22)60608-5http://dx.doi.org/10.1016/s1872-5805(22)60608-5
许怡飞, 刘璐, 石士考, 等. 柿子叶制备碳量子点的光谱性质及对Fe3+的荧光探针[J]. 光谱学与光谱分析, 2022, 42(08): 2418-2422.
XU Y F, LIU L, SHI S K, et al. Spectroscopic Properties of Carbon Quantum Dots Prepared From Persimmon Leaves and Fluorescent Probe to Fe3+ Ions [J]. Spectroscopy and Spectral Analysis, 2022, 42(08): 2418-2422. (in Chinese)
ZHANG R Z, LI K K, ZHANG K B, et al. Coal-based carbon quantum dots/carbon nitride composites for photocatalytic CO2 reduction[J]. CIESC Journal, 2020, 71(6): 2788-2794.
KUMAR T S, RAGHUPATHY S, PALANIVEL D, et al. Fluorescent carbon nano dots from lignite: unveiling the impeccable evidence for quantum confinement[J]. Physical Chemistry Chemical Physics, 2016, 18(17): 12065-12073. doi: 10.1039/c6cp00867dhttp://dx.doi.org/10.1039/c6cp00867d
LI Y H, SHI Y T, SONG X D, et al. Pitch-derived carbon quantum dots as fluorescent probe for selective and sensitive detection of ferric ions and bioimaging[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 412: 113253. doi: 10.1016/j.jphotochem.2021.113253http://dx.doi.org/10.1016/j.jphotochem.2021.113253
ZHANG J J, LIU Q R, HE H. Coal tar pitch as natural carbon quantum dots decorated on TiO2 for visible light photodegradation of rhodamine B[J]. Carbon, 2019, 152: 284-294. doi: 10.1016/j.carbon.2019.06.034http://dx.doi.org/10.1016/j.carbon.2019.06.034
LIU X X, HAO J Y, LIU J H, et al. Green synthesis of carbon quantum dots from lignite coal and the application in Fe3+ detection[J]. IOP Conference Series: Earth and Environmental Science, 2018, 113: 012063. doi: 10.1088/1755-1315/113/1/012063http://dx.doi.org/10.1088/1755-1315/113/1/012063
SHARMA D K, DHAWAN H. Separative refining of coals through solvolytic extraction under milder conditions: A Review[J]. Industrial & Engineering Chemistry Research, 2018, 57(25): 8361-8380. doi: 10.1021/acs.iecr.8b00345http://dx.doi.org/10.1021/acs.iecr.8b00345
SHEN T Y, JIA P Y, CHEN D S, et al. Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 248: 119282. doi: 10.1016/j.saa.2020.119282http://dx.doi.org/10.1016/j.saa.2020.119282
WANG H T, LIU S, XIE Y S, et al. Facile one-step synthesis of highly luminescent N-doped carbon dots as an efficient fluorescent probe for chromium(vi) detection based on the inner filter effect[J]. New Journal of Chemistry, 2018, 42(5): 3729-3735. doi: 10.1039/c8nj00216ahttp://dx.doi.org/10.1039/c8nj00216a
IANNAZZO D, PISTONE A, SALAMÒ M, et al. Graphene quantum dots for cancer targeted drug delivery[J]. International Journal of Pharmaceutics, 2017, 518(1): 185-192. doi: 10.1016/j.ijpharm.2016.12.060http://dx.doi.org/10.1016/j.ijpharm.2016.12.060
徐艳梅, 潘志彦, 胡浩权. 利用拉曼光谱研究大柳塔煤热解焦结构及其燃烧性能[J]. 燃料化学学报, 2021, 49(11): 1656-1666.
XU Y M, PAN Z Y, HU H Q. Study on structure and combustion performance of Daliuta coal pyrolysis char by Raman spectroscopy[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1656-1666. (in Chinese)
DING H, ZHOU X X, QIN B T, et al. Highly fluorescent near-infrared emitting carbon dots derived from lemon juice and its bioimaging application[J]. Journal of Luminescence, 2019, 211: 298-304. doi: 10.1016/j.jlumin.2019.03.064http://dx.doi.org/10.1016/j.jlumin.2019.03.064
KURNIAWAN D, CHIANG W H. Microplasma-enabled colloidal nitrogen-doped graphene quantum dots for broad-range fluorescent pH sensors[J]. Carbon, 2020, 167(15): 675-684. doi: 10.1016/j.carbon.2020.05.085http://dx.doi.org/10.1016/j.carbon.2020.05.085
KUMAR S, AZIZ S T, GIRSHEVITZ O, et al. One-step synthesis of N-doped graphene quantum dots from chitosan as a sole precursor using chemical vapor deposition[J]. Journal of Physical Chemistry C, 2018, 122(4): 2343-2349. doi: 10.1021/acs.jpcc.7b05494http://dx.doi.org/10.1021/acs.jpcc.7b05494
LIU F J, WEI X Y, GUI J, et al. Characterization of organonitrogen species in Xianfeng lignite by sequential extraction and ruthenium ion-catalyzed oxidation[J]. Fuel Processing Technology, 2014, 126: 199-206. doi: 10.1016/j.fuproc.2014.05.004http://dx.doi.org/10.1016/j.fuproc.2014.05.004
NIE H, LI M J, LI Q S, et al. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing[J]. Chemistry of Materials, 2014, 26(10): 3104-3112. doi: 10.1021/cm5003669http://dx.doi.org/10.1021/cm5003669
HAN Y, SHI L M, LUO X L, et al. A signal-on fluorescent sensor for ultra-trace detection of Hg2+ via Ag+ mediated sulfhydryl functionalized carbon dots[J]. Carbon, 2019, 149: 355-363. doi: 10.1016/j.carbon.2019.04.052http://dx.doi.org/10.1016/j.carbon.2019.04.052
OU S F, ZHENG Y Y, LEE S J, et al. N-doped carbon quantum dots as fluorescent bioimaging agents[J]. Crystals, 2021, 11(7): 789. doi: 10.3390/cryst11070789http://dx.doi.org/10.3390/cryst11070789
GUO Q, FENG J G, LIU H Y, et al. Underlying electrochemical activity mechanisms on tunable electronic structures of graphene quantum dots doped with nitrogen and sulfur heteroatoms[J]. Journal of The Electrochemical Society, 2020, 167(16): 166518. doi: 10.1149/1945-7111/abd44dhttp://dx.doi.org/10.1149/1945-7111/abd44d
周叶红, 刘竞, 刘洋, 等. N、S共掺杂碳点的制备及其对Cr6+的检测[J]. 实验室研究与探索, 2022, 41(07): 11-17.
ZHOU Y H,LIU J, LIU Y, et al. Preparation of N and S Co-doped Carbon Dots and lts Detection of Cr6+[J]. Research and Exploration in Laboratory, 2022, 41(07): 11-17. (in Chinese)
ANAND S R, BHATI A, SAINI D, et al. Antibacterial nitrogen-doped carbon dots as a reversible "Fluorescent Nanoswitch" and fluorescent ink[J]. ACS Omega, 2019, 4(1): 1581-1591. doi: 10.1021/acsomega.8b03191http://dx.doi.org/10.1021/acsomega.8b03191
HUANG H, LI C G, SHI Z, et al. Microwave-assisted hydrothermal synthesis of carbon dots based on tyrosine and their application in ion detection and bioimaging[J]. Chemical Journal of Chinese Universities, 2019, 40(8): 1579-1585.
XI Z F, YUAN F L, WANG Z F, et al. Highly efficient and stable full-color random lasing emission based on carbon quantum dots[J]. Acta Chimica Sinica, 2018(6): 460-466. doi: 10.6023/a18020048http://dx.doi.org/10.6023/a18020048
郭颖, 李午戊, 刘洋. 碳点的性质及其在化学发光分析中的研究进展[J]. 应用化学, 33(6): 624-632. doi: 10.11944/j.issn.1000-0518.2016.06.150411http://dx.doi.org/10.11944/j.issn.1000-0518.2016.06.150411
GUO Y, LI W W, LIU Y. Carbon Dots and Their Research Progress in Chemiluminescence Analysis[J]. Chinese Journal of Applied Chemistry, 33(6): 624-632. doi: 10.11944/j.issn.1000-0518.2016.06.150411http://dx.doi.org/10.11944/j.issn.1000-0518.2016.06.150411
高春波, 景晓霞, 彭邦华, 等. 分析化学分析方法的原理及应用研究[M]. 北京: 中国纺织出版社, 2018.
GAO C B, JING X X, PENG B H, et al. FENGXI HUAXUE FENXI FANGFA DE YUANLI JI YINGYONG YANJIU[M]. Beijing: China Textile & Apparel Press, 2018. (in Chinese)
郝丽娟, 王婷, 董国华, 等. 基于玉米淀粉制备绿色碳量子点及氢离子/氢氧根离子调节荧光开关性能[J]. 应用化学, 2021, 38(2): 202-211.
HAO L J, WANG T, DONG G H, et al. Preparation of Green Carbon Quantum Dots from Corn Starch and Hydrogen Ion/Hydroxyl Ion Regulated Fluorescent Switch Performance[J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 202-211. (in Chinese)
乔荫颇, 张攀, 殷海荣, 等. Dy3+掺杂硼酸盐玻璃的制备、表征及发光特性[J]. 发光学报, 2016, 37(08): 948-954. doi: 10.3788/fgxb20163708.0948http://dx.doi.org/10.3788/fgxb20163708.0948
QIAO Y P, ZHANG P, YIN H R, et al. Preparation, Characterization and Luminescence Properties of Dy3+ Doped Borate Glasses[J]. Chinese Journal of Luminescence, 2016, 37(8): 948-954. (in Chinese). doi: 10.3788/fgxb20163708.0948http://dx.doi.org/10.3788/fgxb20163708.0948
PANG S B, ZHANG Y, WU C K, et al. Fluorescent carbon dots sensor for highly sensitive detection of guanine[J]. Sensors and Actuators B: Chemical, 2015, 222: 857-863. doi: 10.1016/j.snb.2015.09.037http://dx.doi.org/10.1016/j.snb.2015.09.037
任世明, 郑祖阳, 韩春晖, 等. 碱木质素碳点的制备及对Fe3+检测性能研究[J]. 中国造纸, 2022, 41(4): 38-46.
REN S M, ZHENG Z Y, HAN CH, et al. Preparation of Alkali Lignin Carbon Dots and Study on Fe3+ Detection Performance[J]. China Pulp & Paper, 2022, 41(4): 38-46. (in Chinese)
曲可琪, 尤月, 程扬, 等. 香菇碳量子点的制备及其对Fe3+的响应[J]. 功能材料, 2019, 50(9): 215-220.
QU K Q, YOU Y, CHENG Y, et al. Preparation of lentinus edodes carbon quantum dots and its response to Fe3+[J]. Journal of the Function Materials, 2019, 50(9): 215-220. (in Chinese)
RU G J, XIN Q, RUI J X, et al. Single precursor-based luminescent nitrogen-doped carbon dots and their application for iron (III) sensing[J]. Arabian Journal of Chemistry, 2019, 12: 1083-1091. doi: 10.1016/j.arabjc.2019.06.004http://dx.doi.org/10.1016/j.arabjc.2019.06.004
李庆芝, 周奕华, 陈袁, 等. 比率型碳点荧光传感器检测机理与应用研究进展[J]. 发光学报, 2020,41(5):579-591. doi: 10.3788/fgxb20204105.0579http://dx.doi.org/10.3788/fgxb20204105.0579
LI Q Z, ZHOU Y H, CHEN Y, et al. Research Progress on Detection Mechanism and Application of Carbon Dots-based Ratiometric Fluorescence Sensor[J]. Chinese Journal of Luminescence, 2020, 41(5): 579-591. (in Chinese). doi: 10.3788/fgxb20204105.0579http://dx.doi.org/10.3788/fgxb20204105.0579
CHEN Q, ZHU P P, XIONG J, et al. A new dual-recognition strategy for hybrid ratiometric and ratiometric sensing perfluorooctane sulfonic acid based on high fluorescent carbon dots with ethidium bromide[J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 2020, 224, 117362. doi: 10.1016/j.saa.2019.117362http://dx.doi.org/10.1016/j.saa.2019.117362
杨振华, 孙宣森, 张月霞, 等. 氮硫共掺杂碳点的制备及其对牛奶中土霉素的检测[J]. 应用化学, 2022, 39(09): 1382-1390.
YANG Z H, SUN X S, ZHANG Y X, et al. Preparation of Nitrogen Sulfur Co⁃doped Carbon Dots with Nitrogen Sulfur and the Application for Detection of Oxytetracycline in Milk[J]. Chinese Journal of Applied Chemistry, 2022, 39(09): 1382-1390. (in Chinese)
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构