1.广州医科大学 生物医学工程学院, 广东 广州 511436
[ "陈志山(1993-),男,广东汕尾人,博士研究生,2020年于广州医科大学获得硕士学位,主要从事荧光纳米材料体外检测方面的研究。Email: zhishan_chen@qq.com" ]
[ "徐朋飞(1996-),男,江苏宿迁人,硕士研究生,2023年于广州医科大学获得硕士学位,主要从事荧光纳米材料体外检测方面的研究。Email: 2432368710@qq.com" ]
[ "李杨(1984-),男,山东淄博人,博士,教授,博士研究生导师,2014年于华南理工大学获得博士学位,主要从事无机固体发光材料缺陷调控,特别是长余辉材料的设计、机理及应用的研究。Email: lychris@sina.com" ]
扫 描 看 全 文
陈志山,徐朋飞,张绍安等.黑色素瘤循环肿瘤细胞检测的金属卤化物钙钛矿外泌体复合探针检测新策略[J].发光学报,
CHEN Zhishan,XU Pengfei,ZHANG Shaoan,et al.Exosome-Triggered Metal Halide Perovskite- Mediated Strategy of Circulating Tumors Cells Detection for Melanoma[J].Chinese Journal of Luminescence,
陈志山,徐朋飞,张绍安等.黑色素瘤循环肿瘤细胞检测的金属卤化物钙钛矿外泌体复合探针检测新策略[J].发光学报, DOI:10.37188/CJL.20230237
CHEN Zhishan,XU Pengfei,ZHANG Shaoan,et al.Exosome-Triggered Metal Halide Perovskite- Mediated Strategy of Circulating Tumors Cells Detection for Melanoma[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230237
液体活检技术的兴起为黑色素瘤的快速、准确诊断开辟了新的机遇。然而,普通循环肿瘤细胞活检基于上皮黏附蛋白进行阳性富集,但信号标记的有机荧光探针存在量子效率低,导致检测黑色素瘤循环肿瘤细胞时准确率和灵敏度较低。本文以高量子效率的金属卤化物钙钛矿量子点作为信号标记物,以黑色素瘤来源的外泌体作为生物识别分子,构建了一种用于黑色素瘤液体活检的循环肿瘤细胞检测新策略。与商品化的上皮细胞黏附蛋白富集策略相比,本研究报道的复合探针检测新策略,其检测灵敏度提高了一个数量级,并且具有良好的亲水性和低毒性。实验结果证明了外泌体引导的金属卤化物钙钛矿量子点指示的黑色素瘤循环肿瘤细胞检测新策略具有理想的应用前景。
The emerging technique of liquid biopsy opens up a new opportunity for the rapid and accurate diagnosis of melanoma tumor featuring high metastatic tendency and mortality rates. However, the accuracy and sensitivity for liquid biopsy of melanoma are still limited, due to the use of low-expression epithelial cell adhesion molecule(EpCAM) to achieve enrichment of circulating tumor cells(CTCs) and subaltern photoluminescence quantum yields(PLQYs) organic probes as signal indicators. Here, we construct a new strategy of CTCs detection for liquid biopsy of melanoma by employing high-PLQYs metal halide perovskite(MHP) quantum dots and melanoma-derived exosome(MEX) as signal indicators and recognition analytes, respectively. The synthesized composites(PSPE) exhibit the superiorities on perfect hydrophilicity and hypotoxicity. In contrast to commercial EpCAM-triggered products, the detection sensitivity of our reagent materials is raised up by an order of magnitude. All results predict the potential of exosome-triggered MHP-mediated CTCs detection in accurate melanoma diagnosis of liquid biopsy.
黑色素瘤外泌体循环肿瘤细胞金属卤化物钙钛矿液体活检
melanomaexosomecirculating tumor cellsmetal halide perovskiteliquid biopsy
Luke J J,Flaherty K T,Ribas A,et al. Targeted agents and immunotherapies: optimizing outcomes in melanoma [J]. Nat Rev Clin Oncol, 2017,14(8):463-482. doi: 10.1038/nrclinonc.2017.43http://dx.doi.org/10.1038/nrclinonc.2017.43
Rodriguez-Cerdeira C,Carnero Gregorio M,Lopez-Barcenas A,et al. Advances in immunotherapy for melanoma: a comprehensive review [J]. Mediat Inflamm, 2017,2017:3264217. doi: 10.1155/2017/3264217http://dx.doi.org/10.1155/2017/3264217
De Rubis G,Rajeev Krishnan S.Bebawy M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis [J]. Trends Pharmacol Sci, 2019,40(3):172-186. doi: 10.1016/j.tips.2019.01.006http://dx.doi.org/10.1016/j.tips.2019.01.006
Zhe X,Cher M L.Bonfil R D. Circulating tumor cells: finding the needle in the haystack [J]. Am J Cancer Res, 2011,1(6):740-751.
Ding P,Wang Z,Wu Z,et al. Natural biointerface based on cancer cell membranes for specific capture and release of circulating tumor cells [J]. Acs Appl Mater Inter, 2020,12(18):20263-20270. doi: 10.1021/acsami.0c03355http://dx.doi.org/10.1021/acsami.0c03355
Hai P,Qu Y,Li Y,et al. Label-free high-throughput photoacoustic tomography of suspected circulating melanoma tumor cells in patients in vivo [J]. J Biomed Opt, 2020,25(3):1-17. doi: 10.1117/1.jbo.25.3.036002http://dx.doi.org/10.1117/1.jbo.25.3.036002
Lim S H,Becker T M,Chua W,et al. Circulating tumour cells and circulating free nucleic acid as prognostic and predictive biomarkers in colorectal cancer [J]. Cancer Lett., 2014,346(1):24-33. doi: 10.1016/j.canlet.2013.12.019http://dx.doi.org/10.1016/j.canlet.2013.12.019
Zhang H K,Yuan F N,Qi Y Z,et al. Circulating tumor cells for glioma [J]. Front Oncol, 2021,11:1-9. doi: 10.3389/fonc.2021.607150http://dx.doi.org/10.3389/fonc.2021.607150
Ma C H,Zhang L J,Hu H X,et al. [clinical application of circulating tumor cell detection: the challenges and solutions] [J]. Zhonghua Bing Li Xue Za Zhi, 2022,51(3):276-280.
Vedova P D,Ilieva M,Zhurbenko V,et al. Gold nanoparticle-based sensors activated by external radio frequency fields [J]. Small, 2015,11(2):248-256. doi: 10.1002/smll.201401187http://dx.doi.org/10.1002/smll.201401187
Wang L W,Peng C W,Chen C,et al. Quantum dots-based tissue and in vivo imaging in breast cancer researches: current status and future perspectives [J]. Breast Cancer Res Tr, 2015,151(1):7-17. doi: 10.1007/s10549-015-3363-xhttp://dx.doi.org/10.1007/s10549-015-3363-x
Kim J H,Chung H H,Jeong M S,et al. One-step detection of circulating tumor cells in ovarian cancer using enhanced fluorescent silica nanoparticles [J]. Int J Nanomedicine, 2013,8(1):2247-2257.
Zhang J,Shikha S,Mei Q,et al. Fluorescent microbeads for point-of-care testing: a review [J]. Mikrochim Acta, 2019,186(6):1-21. doi: 10.1007/s00604-019-3449-yhttp://dx.doi.org/10.1007/s00604-019-3449-y
Gao Y,Gu S G,Zhang Y Y,et al. The architecture and function of monoclonal antibody-functionalized mesoporous silica nanoparticles loaded with mifepristone: repurposing abortifacient for cancer metastatic chemoprevention [J]. Small, 2016,12(19):2595-2608. doi: 10.1002/smll.201600550http://dx.doi.org/10.1002/smll.201600550
van der Gun B T,Melchers L J,Ruiters M H,et al. EpCAM in carcinogenesis: the good, the bad or the ugly [J]. Carcinogenesis, 2010,31(11):1913-1921. doi: 10.1093/carcin/bgq187http://dx.doi.org/10.1093/carcin/bgq187
Lin D,Shen L,Luo M,et al. Circulating tumor cells: biology and clinical significance [J]. Signal Transduct Target Ther, 2021,6(1):1-24. doi: 10.1038/s41392-021-00817-8http://dx.doi.org/10.1038/s41392-021-00817-8
Gaiser M R,von Bubnoff N,Gebhardt C,et al. Liquid biopsy to monitor melanoma patients [J]. J Dtsch Dermatol Ges, 2018,16(4):405-414. doi: 10.1111/ddg.13461http://dx.doi.org/10.1111/ddg.13461
Rapanotti M C,Campione E,Spallone G,et al. Minimal residual disease in melanoma: Circulating melanoma cells and predictive role of MCAM/MUC18/MelCAM/CD146 [J]. Cell Death Discov, 2017,3(1):1-10. doi: 10.1038/cddiscovery.2017.5http://dx.doi.org/10.1038/cddiscovery.2017.5
Deng H.Yu H. Silver nanoparticle surface enabled self-assembly of organic dye molecules [J]. Materials (Basel), 2019,12(16):1-14. doi: 10.3390/ma12162592http://dx.doi.org/10.3390/ma12162592
Green A P.Buckley A R. Solid state concentration quenching of organic fluorophores in PMMA [J]. Phys Chem Chem Phys, 2015,17(2):1435-1440. doi: 10.1039/c4cp05244ghttp://dx.doi.org/10.1039/c4cp05244g
Cheloni G.Slaveykova V I. Optimization of the C11-BODIPY(581/591) dye for the determination of lipid oxidation in chlamydomonas reinhardtii by flow cytometry [J]. Cytom Part A, 2013,83(10):952-961. doi: 10.1002/cyto.a.22338http://dx.doi.org/10.1002/cyto.a.22338
Thakur A,Parra D C,Motallebnejad P,et al. Exosomes: small vesicles with big roles in cancer, vaccine development, and therapeutics [J]. Bioact Mater, 2022,10:281-294. doi: 10.1016/j.bioactmat.2021.08.029http://dx.doi.org/10.1016/j.bioactmat.2021.08.029
Srivastava A,Rathore S,Munshi A,et al. Organically derived exosomes as carriers of anticancer drugs and imaging agents for cancer treatment [J]. Semin Cancer Biol, 2022,86(Pt 1):80-100. doi: 10.1016/j.semcancer.2022.02.020http://dx.doi.org/10.1016/j.semcancer.2022.02.020
Qiao L,Hu S,Huang K,et al. Tumor cell-derived exosomes home to their cells of origin and can be used as trojan horses to deliver cancer drugs [J]. Theranostics, 2020,10(8):3474-3487. doi: 10.7150/thno.39434http://dx.doi.org/10.7150/thno.39434
Desgrosellier J S.Cheresh D A. Integrins in cancer: biological implications and therapeutic opportunities [J]. Nat Rev Cancer, 2010,10(1):9-22. doi: 10.1038/nrc2748http://dx.doi.org/10.1038/nrc2748
Jaiswal S,Jamieson C H,Pang W W,et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis [J]. Cell, 2009,138(2):271-285. doi: 10.1016/j.cell.2009.05.046http://dx.doi.org/10.1016/j.cell.2009.05.046
Lignos I,Stavrakis S,Nedelcu G,et al. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping [J]. Nano Lett, 2016,16(3):1869-1877. doi: 10.1021/acs.nanolett.5b04981http://dx.doi.org/10.1021/acs.nanolett.5b04981
Wang G,Yu S,Liu B,et al. Nanocomposites of CsPbBr3 perovskite quantum dots embedded in Gd2O3:Eu3+ hollow spheres for leds application [J]. Journal of Rare Earths, 2022,40(10):1509-1518. doi: 10.1016/j.jre.2021.09.010http://dx.doi.org/10.1016/j.jre.2021.09.010
Shah S A A,Sayyad M H,Sun J,et al. Recent advances and emerging trends of rare-earth-ion doped spectral conversion nanomaterials in perovskite solar cells [J]. Journal of Rare Earths, 2022,40(11):1651-1667. doi: 10.1016/j.jre.2021.12.001http://dx.doi.org/10.1016/j.jre.2021.12.001
Xu X,Pan Y,Ge L,et al. High-performance perovskite composite electrocatalysts enabled by controllable interface engineering [J]. Small, 2021,17(29):1-10. doi: 10.1002/smll.202101573http://dx.doi.org/10.1002/smll.202101573
Ma X,Yang W,Ge X,et al. Design a novel multifunctional (CsPbBr3/Fe3O4)@MPSs@SiO2 magneto-optical microspheres for capturing circulating tumor cells [J]. Appl Surf Sci, 2021,551:1-9. doi: 10.1016/j.apsusc.2021.149427http://dx.doi.org/10.1016/j.apsusc.2021.149427
Zhao Y,Li C,Jiang J,et al. Sensitive and stable tin-lead hybrid perovskite photodetectors enabled by double-sided surface passivation for infrared upconversion detection [J]. Small, 2020,16(26):1-10. doi: 10.1002/smll.202070146http://dx.doi.org/10.1002/smll.202070146
Yan Q-B,Bao N.Ding S-N. Thermally stable and hydrophilic CsPbBr3/mPEG-NH2 nanocrystals with enhanced aqueous fluorescence for cell imaging [J]. J Mater Chem B, 2019,7(26):4153-4160. doi: 10.1039/c9tb00568dhttp://dx.doi.org/10.1039/c9tb00568d
丁梦宇,郑标,魏维平,等. 单分散CsPbBr3@SiO2纳米颗粒制备及其在柔性显示与荧光防伪中的应用 [J]. 发光学报, 2022,43(8):1309-1318.
DING M Y,ZHNEG B,WEI W P,et al. Synthesis of monodisperse CsPbBr3@SiO2 nanoparticles for flexible display and anti-counterfeiting [J]. Chin. J. Lumin., 2022,43(8):1309-1318.
王栋,兰月梅,刘劝,等. 白光LED用CsPbBr3钙钛矿量子点玻璃制备及其稳定性 [J]. 发光学报, 2021,42(12):1863-1871. doi: 10.37188/cjl.20210268http://dx.doi.org/10.37188/cjl.20210268
WANG D,LAN Y M,LIU Q,et al. Preparation and stability of CsPbBr3 perovskite quantum dots glass for white LED [J]. Chin. J. Lumin., 2021,42(12):1863-1871. doi: 10.37188/cjl.20210268http://dx.doi.org/10.37188/cjl.20210268
Yang D B,Zhang W H,Zhang H Y,et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics [J]. Theranostics, 2020,10(8):3684-3707. doi: 10.7150/thno.41580http://dx.doi.org/10.7150/thno.41580
Zhong Q,Cao M,Hu H,et al. One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles [J]. ACS Nano, 2018,12(8):8579-8587. doi: 10.1021/acsnano.8b04209http://dx.doi.org/10.1021/acsnano.8b04209
Kumar P,Patel M,Park C,et al. Highly luminescent biocompatible CsPbBr3@SiO2 core-shell nanoprobes for bioimaging and drug delivery [J]. J Mater Chem B, 2020,8(45):10337-10345. doi: 10.1039/d0tb01833chttp://dx.doi.org/10.1039/d0tb01833c
Pramanik A,Gates K,Patibandla S,et al. Water-soluble and bright luminescent cesium-lead-bromide perovskite quantum dot-polymer composites for tumor-derived exosome imaging [J]. ACS Appl Bio Mater, 2019,2(12):5872-5879. doi: 10.1021/acsabm.9b00837http://dx.doi.org/10.1021/acsabm.9b00837
Xu L,Chen J,Song J,et al. Double-protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-modal anti-counterfeiting codes [J]. Acs Appl Mater Inter, 2017,9(31):26556-26564. doi: 10.1021/acsami.7b06436http://dx.doi.org/10.1021/acsami.7b06436
Waggoner A. Covalent labeling of proteins and nucleic-acids with fluorophores [J]. Method Enzymol, 1995,246:362-373. doi: 10.1016/0076-6879(95)46017-9http://dx.doi.org/10.1016/0076-6879(95)46017-9
Li J,Dong Y,Wei R,et al. Stable, bright, and long-fluorescence-lifetime dyes for deep-near-infrared bioimaging [J]. J Am Chem Soc, 2022,144(31):14351-14362. doi: 10.1021/jacs.2c05826http://dx.doi.org/10.1021/jacs.2c05826
Cui S T,Wu Y F,Liu Y,et al. Synthesis of carbon dots with a tunable photoluminescence and their applications for the detection of acetone and hydrogen peroxide [J]. CHINESE CHEMICAL LETTERS, 2020,31(2):487-493. doi: 10.1016/j.cclet.2019.04.014http://dx.doi.org/10.1016/j.cclet.2019.04.014
He Y,Su Y,Yang X,et al. Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging [J]. J Am Chem Soc, 2009,131(12):4434-4438. doi: 10.1021/ja808827ghttp://dx.doi.org/10.1021/ja808827g
Xu Q,Liu Y,Su R,et al. Highly fluorescent zn-doped carbon dots as fenton reaction-based bio-sensors: an integrative experimental-theoretical consideration [J]. Nanoscale, 2016,8(41):17919-17927. doi: 10.1039/c6nr05434jhttp://dx.doi.org/10.1039/c6nr05434j
Cosa G,Focsaneanu K S,McLean J R,et al. Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution [J]. Photochemistry and photobiology, 2001,73(6):585-599. doi: 10.1562/0031-8655(2001)073<0585:ppofdd>2.0.co;2http://dx.doi.org/10.1562/0031-8655(2001)073<0585:ppofdd>2.0.co;2
Pan L J,Tu J W,Yang L L,et al. Photoluminescence enhancement of NIR-II emissive Ag2S quantum dots via chloride-mediated growth and passivation [J]. Adv Opt Mater, 2022,10(9):1-10. doi: 10.1002/adom.202102806http://dx.doi.org/10.1002/adom.202102806
Murphy J E,Beard M C,Norman A G,et al. Pbte colloidal nanocrystals: synthesis, characterization, and multiple exciton generation [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006,128(10):3241-3247. doi: 10.1021/ja0574973http://dx.doi.org/10.1021/ja0574973
Zhao C,Zhang X,Li K,et al. Forster resonance energy transfer switchable self-assembled micellar nanoprobe: ratiometric fluorescent trapping of endogenous H2S generation via fluvastatin-stimulated upregulation [J]. J Am Chem Soc, 2015,137(26):8490-8498. doi: 10.1021/jacs.5b03248http://dx.doi.org/10.1021/jacs.5b03248
Sun C,Zhang Y,Ruan C,et al. Efficient and stable white leds with silica-coated inorganic perovskite quantum dots [J]. Adv Mater, 2016,28(45):10088-10094. doi: 10.1002/adma.201603081http://dx.doi.org/10.1002/adma.201603081
Yang Z,Xu J,Zong S,et al. Lead halide perovskite nanocrystals-phospholipid micelles and their biological applications: multiplex cellular imaging and in vitro tumor targeting [J]. Acs Appl Mater Inter, 2019,11(51):47671-47679. doi: 10.1021/acsami.9b12924http://dx.doi.org/10.1021/acsami.9b12924
Battaglia L,Scomparin A,Dianzani C,et al. Nanotechnology addressing cutaneous melanoma: the italian landscape [J]. Pharmaceutics, 2021,13(10):1617. doi: 10.3390/pharmaceutics13101617http://dx.doi.org/10.3390/pharmaceutics13101617
Mkhobongo B,Chandran R.Abrahamse H. The role of melanoma cell-derived exosomes (MTEX) and photodynamic therapy (PDT) within a tumor microenvironment [J]. Int J Mol Sci, 2021,22(18):9726. doi: 10.3390/ijms22189726http://dx.doi.org/10.3390/ijms22189726
Alia Moosavian S,Hashemi M,Etemad L,et al. Melanoma-derived exosomes: versatile extracellular vesicles for diagnosis, metastasis, immune modulation, and treatment of melanoma [J]. Int Immunopharmacol, 2022,113(Pt A):109320. doi: 10.1016/j.intimp.2022.109320http://dx.doi.org/10.1016/j.intimp.2022.109320
Pretti M A M,Bernardes S S,da Cruz J G V,et al. Extracellular vesicle-mediated crosstalk between melanoma and the immune system: impact on tumor progression and therapy response [J]. J. Leukoc. Biol., 2020,108(4):1101-1115. doi: 10.1002/jlb.3mr0320-644rhttp://dx.doi.org/10.1002/jlb.3mr0320-644r
Vakhshiteh F,Atyabi F.Ostad S N. Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy [J]. Int J Nanomedicine, 2019,14:2847-2859. doi: 10.2147/ijn.s200036http://dx.doi.org/10.2147/ijn.s200036
Witwer K W,Buzas E I,Bemis L T,et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research [J]. J Extracell Vesicles, 2013,2(1):20360. doi: 10.3402/jev.v2i0.20360http://dx.doi.org/10.3402/jev.v2i0.20360
Van Deun J,Roux Q,Deville S,et al. Feasibility of mechanical extrusion to coat nanoparticles with extracellular vesicle membranes [J]. Cells, 2020,9(8):1797. doi: 10.3390/cells9081797http://dx.doi.org/10.3390/cells9081797
Mo J,Da X,Li Q,et al. The study of exosomes-encapsulated mPEG-PLGA polymer drug-loaded particles for targeted therapy of liver cancer [J]. J Oncol, 2022,2022:4234116. doi: 10.1155/2022/4234116http://dx.doi.org/10.1155/2022/4234116
Cheng G,Li W,Ha L,et al. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins [J]. J Am Chem Soc, 2018,140(23):7282-7291. doi: 10.1021/jacs.8b03584http://dx.doi.org/10.1021/jacs.8b03584
Gurung S,Perocheau D,Touramanidou L,et al. The exosome journey: from biogenesis to uptake and intracellular signalling [J]. Cell Commun Signal, 2021,19(1):47. doi: 10.1186/s12964-021-00730-1http://dx.doi.org/10.1186/s12964-021-00730-1
Belhadj Z,He B,Deng H,et al. A combined "eat me/don't eat me" strategy based on extracellular vesicles for anticancer nanomedicine [J]. J Extracell Vesicles, 2020,9(1):1806444. doi: 10.1080/20013078.2020.1806444http://dx.doi.org/10.1080/20013078.2020.1806444
Escrevente C,Keller S,Altevogt P,et al. Interaction and uptake of exosomes by ovarian cancer cells [J]. BMC Cancer, 2011,11:108. doi: 10.1186/1471-2407-11-108http://dx.doi.org/10.1186/1471-2407-11-108
Parolini I,Federici C,Raggi C,et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells [J]. J Biol Chem, 2009,284(49):34211-34222. doi: 10.1074/jbc.m109.041152http://dx.doi.org/10.1074/jbc.m109.041152
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构