1.中国科学院长春应用化学研究所 稀土资源利用国家重点实验室, 吉林 长春 130022
2.中国科学技术大学 应用化学与工程学院, 安徽 合肥 230026
3.中国地质大学(武汉) 材料与化学学院, 湖北 武汉 430074
[ "张敏(2000-),女,内蒙包头人,中国科学技术大学在读硕士,2022年于内蒙古大学获得学士学位,主要从事掺杂型无机发光材料的合成与发光性质研究。E-mail: zhangmin2620@ciac.ac.cn" ]
[ "党佩佩(1993-),女,陕西榆林人,中国科学院长春应用化学研究所助理研究员,2021年于中国科学技术大学获得博士学位,主要从事稀土及铋离子掺杂无机固体发光材料局域结构设计与发光性质调控的应用基础研究。E-mail: ppdang@ciac.ac.cn" ]
[ "李国岗(1983-),男,河北衡水人,中国地质大学(武汉)材料与化学学院教授,2012年于中国科学院长春应用化学研究所获得博士学位,主要从事稀土离子和过渡金属离子掺杂的发光材料、半导体发光材料的制备和发光机理的研究,及其在白光LED照明、场发射显示和生物医用等领域应用的探讨;钙钛矿量子点发光材料的合成、复合材料构建,发光机理的探讨及其在照明和显示领域应用探索。E-mail: ggli@cug.edu.cn" ]
[ "林君(1966-),男,吉林长春人,中国科学院长春应用化学研究所研究员,1995年于长春应用化学研究所获得博士学位,主要从事纳-微米结构发光材料的控制合成、形态结构和性能调控及其在显示照明及生物医学领域的应用基础研究。E-mail: jlin@ciac.ac.cn" ]
扫 描 看 全 文
张敏,刘冬杰,魏忆等.铋离子掺杂发光材料的研究进展[J].发光学报,
ZHANG Min,LIU Dong-jie,WEI Yi,et al.Recent Progress on Bi-doped Luminescent Material[J].Chinese Journal of Luminescence,
张敏,刘冬杰,魏忆等.铋离子掺杂发光材料的研究进展[J].发光学报, DOI:10.37188/CJL.20230232
ZHANG Min,LIU Dong-jie,WEI Yi,et al.Recent Progress on Bi-doped Luminescent Material[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230232
铋离子是一种优良的发光材料激活剂和敏化剂,近年来得到广泛研究。Bi,3+,离子由于其易受晶体场强度的影响在紫外和近紫外激发下可获得覆盖整个可见光区域的丰富发射颜色以及近红外发光而受到广泛关注,这些发光材料在固态照明、显示、生物医学和光学传感方面显示出潜在的应用。本综述总结了Bi,3+,的发光特点,重点总结了几类Bi,3+,掺杂发光材料的研究进展,并详细介绍了其发光性质与晶体结构间的构-效关系。针对Bi,3+,掺杂发光材料的发光性能精准调控与优化的关键问题,本综述讨论了组分取代、能量传递、混合价态等设计策略诱导性能调控与优化的机理。最后,讨论了Bi,3+,掺杂发光材料研究的一些未来挑战和机遇,以期指导pc-LED应用中新型发光材料的开发。
Bismuth ions are excellent activators and sensitizers of luminescent materials and have been extensively studied recently. Bi,3+, ions have attracted much attention due to their susceptibility to crystal field strengths and their ability to obtain rich emission colors covering the entire visible region under UV and NUV excitation, as well as NIR luminescence. These phosphor materials show potential applications in solid-state lighting, display, biomedical and optical sensing. In this review, the luminescence characteristics of Bi,3+, and the research progress of Bi,3+,-doped phosphor materials were summarized, and the relationship between their photoluminescence properties and crystal structure was introduced in detail. In view of the key problems for precise regulation and optimization of luminescence properties of Bi,3+, doped luminescent materials, the mechanism induced by design strategies such as component substitution, energy transfer and mixed valence state was discussed in this review. Finally, we discussed some future challenges and opportunities in Bi,3+,-doped luminescent materials, with a view to guiding the discovery and development of new phosphor materials for pc-LED applications.
LEDBi3+掺杂发光材料性能调控
LEDBi3+ dopingluminescent materialsprecise regulation
WANG L, XIE RJ, SUEHIRO T, et al. Down-conversion nitride materials for solid state lighting: Recent advances and perspectives [J]. Chem. Rev., 2018, 118(4):1951-2009. doi: 10.1021/acs.chemrev.7b00284http://dx.doi.org/10.1021/acs.chemrev.7b00284
QIN X, LIU X, HUANG W, et al. Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects [J]. Chem. Rev., 2017, 117(5):4488-4527. doi: 10.1021/acs.chemrev.6b00691http://dx.doi.org/10.1021/acs.chemrev.6b00691
SENDEN T, VAN DIJK-MOES RJA, MEIJERINK A. Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors [J]. Light Sci Appl. 2018, 7:8. doi: 10.1038/s41377-018-0013-1http://dx.doi.org/10.1038/s41377-018-0013-1
PUST P, WEILER V, HECHT C, et al. Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material [J]. Nat. Mater., 2014, 13(9):891-896. doi: 10.1038/nmat4012http://dx.doi.org/10.1038/nmat4012
HUANG X. Red phosphor converts white LEDs [J]. Nat. Photonics. 2014, 8(10):748-749. doi: 10.1038/nphoton.2014.221http://dx.doi.org/10.1038/nphoton.2014.221
ZHU H, LIN CC, LUO W, et al. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes [J]. Nature Communications. 2014, 5(1):4312. doi: 10.1038/ncomms5312http://dx.doi.org/10.1038/ncomms5312
MA Z, SHI Z, YANG D, et al. High color‐rendering index and stable white light‐emitting diodes by assembling two broadband emissive self-trapped excitons [J]. Adv. Mater. Processes. 2021, 33:2001367. doi: 10.1002/adma.202170010http://dx.doi.org/10.1002/adma.202170010
SONG E, JIANG X, ZHOU Y, et al. Heavy Mn2+ doped MgAl2O4 phosphor for high‐efficient near‐Infrared light‐emitting diode and the night‐vision application [J]. Adv. Opt. Mater., 2019, 7(24):1901105. doi: 10.1002/adom.201901105http://dx.doi.org/10.1002/adom.201901105
QIAO J, ZHOU G, ZHOU Y, et al. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes [J]. Nature Communications. 2019, 10(1):5267. doi: 10.1038/s41467-019-13293-0http://dx.doi.org/10.1038/s41467-019-13293-0
SU B, LI M, SONG E, et al. Sb3+‐doping in cesium zinc halides single crystals enabling high‐efficiency near‐infrared emission [J]. Adv. Funct. Mater., 2021, 31(40):2105316. doi: 10.1002/adfm.202105316http://dx.doi.org/10.1002/adfm.202105316
DING C, HUANG Y, SHEN Z, et al. Synthesis and bioapplications of Ag2S quantum dots with near‐infrared fluorescence [J]. Adv. Mater., 2021, 33(32):2007768. doi: 10.1002/adma.202007768http://dx.doi.org/10.1002/adma.202007768
SHANG M, LI C, LIN J. How to produce white light in a single-phase host? [J]. Chem. Soc. Rev., 2014, 43(5):1372-1386. doi: 10.1039/c3cs60314hhttp://dx.doi.org/10.1039/c3cs60314h
YANG Z, ZHAO Y, ZHOU Y, et al. Giant red‐shifted emission in (Sr,Ba)Y2O4:Eu2+ phosphor toward broadband near‐infrared luminescence [J]. Adv. Funct. Mater., 2021, 32(1):2103927. doi: 10.1002/adfm.202103927http://dx.doi.org/10.1002/adfm.202103927
LI G, TIAN Y, ZHAO Y, et al. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs [J]. Chem. Soc. Rev., 2015, 44(23):8688-8713. doi: 10.1039/c4cs00446ahttp://dx.doi.org/10.1039/c4cs00446a
ZHANG H, ZHANG J, SU Y, et al. Metal to metal charge transfer induced efficient yellow/far‐red luminescence in Na2Ca3(Nb, Ta)2O9:Bi3+ toward the applications of white‐LEDs and plant growth light [J]. Adv. Opt. Mater., 2022, 10(10):2200150. doi: 10.1002/adom.202200150http://dx.doi.org/10.1002/adom.202200150
XUE J, WANG X, JEONG JH, et al. Spectral and energy transfer in Bi3+–Ren+(n= 2, 3, 4) co-doped phosphors: extended optical applications [J]. PCCP. 2018, 20(17):11516-11541. doi: 10.1039/c8cp00433ahttp://dx.doi.org/10.1039/c8cp00433a
LOU B-b, YIN M. Luminescence mechanism of Bi3+-doped materials: First principles studies [J]. Chinese J. Lumin., 2022, 43(9):1446-1458. doi: 10.37188/cjl.20220245http://dx.doi.org/10.37188/cjl.20220245
ZHANG Y, ZHANG X, ZHENG L, et al. Energy transfer and tunable emission of Ca14Al10Zn6O35:Bi3+,Sm3+ phosphor [J]. Mater. Res. Bull., 2018, 100:56-61. doi: 10.1016/j.materresbull.2017.12.003http://dx.doi.org/10.1016/j.materresbull.2017.12.003
DANG P, LIANG S, LI G, et al. Broad color tuning of Bi3+/Eu3+-doped (Ba,Sr)3Sc4O9 solid solution compounds via crystal field modulation and energy transfer [J]. J. Mater. Chem. C. 2018, 6(37):9990-9999. doi: 10.1039/c8tc03334jhttp://dx.doi.org/10.1039/c8tc03334j
HAN J, PAN F, MOLOKEEV MS, et al. Redefinition of crystal structure and Bi3+ yellow luminescence with strong near-ultraviolet excitation in La3BWO9:Bi3+ phosphor for white light-emitting diodes [J]. ACS Appl Mater Interfaces. 2018, 10(16):13660-13668. doi: 10.1021/acsami.8b00808http://dx.doi.org/10.1021/acsami.8b00808
LI H, PANG R, LIU G, et al. Synthesis and luminescence properties of Bi3+-activated K2MgGeO4: A promising high-brightness orange-emitting phosphor for WLEDs conversion [J]. Inorg. Chem., 2018, 57(19):12303-12311. doi: 10.1021/acs.inorgchem.8b02025http://dx.doi.org/10.1021/acs.inorgchem.8b02025
YE S, LIU H, WANG Y, et al. Design of a bismuth-activated narrow-band cyan phosphor for use in white light emitting diodes and field emission displays [J]. ACS Sustainable Chem. Eng., 2020, 8(49):18187-18195. doi: 10.1021/acssuschemeng.0c06593http://dx.doi.org/10.1021/acssuschemeng.0c06593
WU Q, LI Y, WANG Y, et al. A novel narrow-band blue-emitting phosphor of Bi3+-activated Sr3Lu2Ge3O12 based on a highly symmetrical crystal structure used for WLEDs and FEDs [J]. Chem. Eng. J., 2020, 401:126130. doi: 10.1016/j.cej.2020.126130http://dx.doi.org/10.1016/j.cej.2020.126130
PIAO S, WANG Y, ZHU G, et al. Structural design and evolution of a novel Bi3+-doped narrow-band emission blue phosphor with excellent photoluminescence performance for wide color gamut wLED [J]. J. Mater. Chem. C. 2021, 9(41):14777-14787. doi: 10.1039/d1tc03130ahttp://dx.doi.org/10.1039/d1tc03130a
PIAO S, WANG Y, ZHANG J, et al. A tunable blue–cyan dual emission phosphor in Ca4-xLu2xHf1-xGe3O12:Bi3+ via forming segregation structure for WLEDs [J]. J. Am. Ceram. Soc., 2022, 105(12):7522-7534. doi: 10.1111/jace.18708http://dx.doi.org/10.1111/jace.18708
WANG S, WU H, FAN Y, et al. A highly efficient narrow-band blue phosphor of Bi3+-activated cubic borate Ba3Lu2B6O15 towards backlight display applications [J]. Chem. Eng. J., 2022, 432:134265. doi: 10.1016/j.cej.2021.134265http://dx.doi.org/10.1016/j.cej.2021.134265
Y W, G LG. Narrow-band blue emission of Bi3+ based on high crystal structure symmetry [J]. Chinese J. Lumin., 2021, 42:1365-1375.
GUAN M, WANG W, YAN W, et al. Novel narrow-band blue-emitting Cs3Zn6B9O21:Bi3+ phosphor with superior thermal stability [J]. CrystEngComm. 2020, 22(35):5792-5798. doi: 10.1039/d0ce00893ahttp://dx.doi.org/10.1039/d0ce00893a
LI G-H, YANG Q-H, WANG R-R, et al. Cation defects succeed in triggering super stability of narrow-band blue-emitting phosphors Ca3Sc2Si3O12:Bi3+ for backlighting display application [J]. Ceram. Int., 2023, 49(17):28159-28166. doi: 10.1016/j.ceramint.2023.06.068http://dx.doi.org/10.1016/j.ceramint.2023.06.068
ZHOU G, JIANG X, ZHAO J, et al. Two-dimensional-layered perovskite ALaTa2O7:Bi3+ (A = K and Na) phosphors with versatile structures and tunable photoluminescence [J]. ACS Appl. Mater. Interfaces. 2018, 10:24648-24655.
YE S, DING J, WU Q. MMCT-induced high-bright yellow light-emitting phosphor Bi3+-activated Ba2YGaO5 used for WLED [J]. Chem. Eng. J., 2022, 428:131238. doi: 10.1016/j.cej.2021.131238http://dx.doi.org/10.1016/j.cej.2021.131238
LIU D, YUN X, DANG P, et al. Yellow/Orange-emitting ABZn2Ga2O7:Bi3+(A = Ca, Sr; B = Ba, Sr) phosphors: optical temperature sensing and white light-emitting diode applications [J]. Chem. Mater., 2020, 32(7):3065-3077. doi: 10.1021/acs.chemmater.0c00054http://dx.doi.org/10.1021/acs.chemmater.0c00054
WU S, LIU Q, XIONG P, et al. Single Bi3+ ultrabroadband white luminescence in double perovskite via crystal lattice engineering toward light‐emitting diode applications [J]. Adv. Opt. Mater., 2022, 10(11):2102842. doi: 10.1002/adom.202102842http://dx.doi.org/10.1002/adom.202102842
DOU C, YIN Y, ZHENG F, et al. Realization of warm white light emitting in single phase Gd(PxV1-x)O4:y at% Sm3+,1 at% Bi3+ phosphor [J]. J. Rare Earths. 2022, 40(4):559-566. doi: 10.1016/j.jre.2021.02.010http://dx.doi.org/10.1016/j.jre.2021.02.010
XIANG S, ZHANG M, ZENG T, et al. Optimizing broadband near-infrared emission in Bi/Sn-doped aluminosilicate glass by modulating glass composition [J]. Micromachines. 2022, 921(13):1-8.
ZHANG K, CHEN J, DONG Q, et al. Broadband optical amplification in Bi-doped multicomponent glass fiber [J]. Adv. Mater. Technol. 2023, 8:1-8. doi: 10.1002/admt.202202042http://dx.doi.org/10.1002/admt.202202042
CHEN W, DONG G, WANG Y, et al. Ultra-broadband and thermally stable NIR emission in Bi-doped glasses and fibers enabled by a metal reduction strategy [J]. J. Am. Ceram. Soc. 2023, 106:4128-4141. doi: 10.1111/jace.19071http://dx.doi.org/10.1111/jace.19071
LUO Y, CHU Y, FU X, et al. 3D printing specialty multi-function twin core Bi/Er co-doped silica optical fibres for ultra-broadband polarized near infrared emission and sensing applications [J]. Opt. Laser Technol., 2023, 168:109817. doi: 10.1016/j.optlastec.2023.109817http://dx.doi.org/10.1016/j.optlastec.2023.109817
WEI Y, GAO Z, YUN X, et al. Abnormal Bi3+-activated NIR emission in highly symmetric XAl12O19 (X = Ba, Sr, Ca) by selective sites occupation [J]. Chem. Mater., 2020, 32(19):8747-8753. doi: 10.1021/acs.chemmater.0c02814http://dx.doi.org/10.1021/acs.chemmater.0c02814
DANG P, YANG W, ZHANG Q, et al. (INVITED)Narrow-band violet and blue emission of Bi3+ in M10P6O25 (M = Ca, Sr) based on highly symmetric crystal structure [J]. Optical Materials: X. 2022, 13:100136. doi: 10.1016/j.omx.2022.100136http://dx.doi.org/10.1016/j.omx.2022.100136
LIU L, PENG S, FU L, et al. Closing the deep-blue gap: Realizing narrow-band deep-blue emission with strong n-UV excitation by cationic substitution for full-spectrum warm W-LED lighting [J]. ACS Sustainable Chem. Eng., 2022, 10(19):6190-6195. doi: 10.1021/acssuschemeng.1c08342http://dx.doi.org/10.1021/acssuschemeng.1c08342
ZHENG C, XIONG P, PENG M, et al. Discovery of a novel rare-earth free narrow-band blue-emitting phosphor Y3Al2Ga3O12:Bi3+ with strong NUV excitation for LCD LED backlights [J]. J. Mater. Chem. C. 2020, 8(39):13668-13675. doi: 10.1039/d0tc02720khttp://dx.doi.org/10.1039/d0tc02720k
WU S, XIONG P, LIU X, et al. Sr3Y(BO3)3:Bi3+ phosphor with excellent thermal stability and color tunability for near-ultraviolet white-light LEDs [J]. J. Mater. Chem. C. 2021, 9:3672-3681. doi: 10.1039/d0tc05960ahttp://dx.doi.org/10.1039/d0tc05960a
YAN W, CHEN S, LIU Y, et al. Giant photoluminescence improvement and controllable emission adjustment in Bi3+-activated Ca4ZrGe3O12 phosphors for high-quality white light-emitting diodes [J]. ACS Appl. Electron. Mater., 2019, 1(9):1970-1980. doi: 10.1021/acsaelm.9b00493http://dx.doi.org/10.1021/acsaelm.9b00493
CHEN Y, ZHANG H, LIU K, et al. Luminescence performance of CaYGaO4:Bi3+, CaYGaO4:Mn4+ and CaYGaO4:Bi3+/Mn4+ phosphors [J]. J. Alloys Compd., 2022, 918:165759. doi: 10.1016/j.jallcom.2022.165759http://dx.doi.org/10.1016/j.jallcom.2022.165759
WANG X, LI X, YU H, et al. Effects of Bi3+ on down-/up-conversion luminescence, temperature sensing and optical transition properties of Bi3+/Er3+ co-doped YNbO4 phosphors [J]. J. Rare Earths. 2022, 40(3):381-389. doi: 10.1016/j.jre.2020.11.001http://dx.doi.org/10.1016/j.jre.2020.11.001
LUO W, JIANG Z, CHEN M, et al. Blue luminescence of Bi3+ in the double perovskite CaLaMgTaO6 matrix for n-UV pumped white light-emitting diodes [J]. J. Alloys Compd., 2020, 814:152354. doi: 10.1016/j.jallcom.2019.152354http://dx.doi.org/10.1016/j.jallcom.2019.152354
WANG X, WANG J, LI X, et al. Novel bismuth activated blue-emitting phosphor Ba2Y5B5O17:Bi3+ with strong NUV excitation for WLEDs [J]. J. Mater. Chem. C. 2019, 7:11227-11233. doi: 10.1039/c9tc03729bhttp://dx.doi.org/10.1039/c9tc03729b
LIU D, YUN X, LI G, et al. Enhanced cyan emission and optical tuning of Ca3Ga4O9:Bi3+ for high‐quality full‐spectrum white light‐emitting diodes [J]. Adv. Opt. Mater., 2020, 8(22):2001037. doi: 10.1002/adom.202001037http://dx.doi.org/10.1002/adom.202001037
ZHAO D, LI Y-N, ZHANG R-J, et al. Tuning emission from greenish to blue via chemical composition modulation in solid solutions (Sr1–yCay)2Sb2O7:Bi3+ under near-UV light excitation [J]. ACS Sustainable Chem. Eng., 2021, 9(22):7569-7577. doi: 10.1021/acssuschemeng.1c01396http://dx.doi.org/10.1021/acssuschemeng.1c01396
GAO Z, FU F, NIU L, et al. Emission-tunable Ba2Y1–xScxNbO6:Bi3+ (0 ≤ x ≤ 1.0) phosphors for white LEDs [J]. J. Rare Earths. 2022, 40(12):1819-1826. doi: 10.1016/j.jre.2021.08.021http://dx.doi.org/10.1016/j.jre.2021.08.021
WEI Y, YANG H, GAO Z, et al. Anti‐thermal‐quenching Bi3+ luminescence in a cyan‐emitting Ba2ZnGe2O7 phosphor based on zinc vacancy [J]. Laser Photonics Rev., 2020, 15(1):2000048. doi: 10.1002/lpor.202000048http://dx.doi.org/10.1002/lpor.202000048
LIU D, DANG P, YUN X, et al. Luminescence color tuning and energy transfer properties in (Sr,Ba)2LaGaO5:Bi3+,Eu3+solid solution phosphors: realization of single-phased white emission for WLEDs [J]. J. Mater. Chem. C. 2019, 7(43):13536-13547. doi: 10.1039/c9tc04938jhttp://dx.doi.org/10.1039/c9tc04938j
CAI M, LANG T, HAN T, et al. Novel cyan-green-emitting Bi3+-doped BaScO2F, R+ (R = Na, K, Rb) perovskite used for achieving full-visible-spectrum LED lighting [J]. Inorg. Chem., 2021, 60(20):15519-15528. doi: 10.1021/acs.inorgchem.1c02150http://dx.doi.org/10.1021/acs.inorgchem.1c02150
JAFFAR BM, SWART HC, SEED AHMED HAA, et al. Luminescence properties of Bi doped LaOF phosphor powder [J]. Opt. Mater., 2023, 135:113367. doi: 10.1016/j.optmat.2022.113367http://dx.doi.org/10.1016/j.optmat.2022.113367
LIU X, XIONG P, LIU H, et al. Origin of D-band emission in a novel Bi3+-doped phosphor La3SnGa5O14:Bi3+ [J]. J. Mater. Chem. C. 2021, 9(10):3455-3461. doi: 10.1039/d1tc00067ehttp://dx.doi.org/10.1039/d1tc00067e
XING GC, GAO ZY, TAO MX, et al. Novel orange-yellow-green color-tunable Bi3+-doped Ba3Y4-wLuwO9 (0 <= w <= 4) luminescent materials: Site migration and photoluminescence control [J]. Inorg. Chem. Front., 2019, 6(12):3598-3603. doi: 10.1039/c9qi01099hhttp://dx.doi.org/10.1039/c9qi01099h
ZHU H, FENG S, KONG Z, et al. Bi3+ occupancy rearrangement in K2-xAxMgGeO4 phosphor to achieve ultra-broad-band white emission based on alkali metal substitution engineering [J]. Appl. Surf. Sci., 2021, 563:150252. doi: 10.1016/j.apsusc.2021.150252http://dx.doi.org/10.1016/j.apsusc.2021.150252
WEI Y, XING G, LIU K, et al. New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization [J]. Light: Science & Applications. 2019, 8(1):15. doi: 10.1038/s41377-019-0126-1http://dx.doi.org/10.1038/s41377-019-0126-1
HU S, LONG Z, WEN Y, et al. An orange‐emitting phosphor BaSrGa4O8:Bi3+,K+ with unique one‐dimensional chain structure for high index color WLEDs [J]. J. Am. Ceram. Soc., 2020, 103(11):6075-6080. doi: 10.1111/jace.17312http://dx.doi.org/10.1111/jace.17312
LI H, PANG R, LUO Y, et al. Structural micromodulation on Bi3+-doped Ba2Ga2GeO7 phosphor with considerable tunability of the defect-oriented optical properties [J]. ACS Appl. Electron. Mater., 2019, 1(2):229-237. doi: 10.1021/acsaelm.8b00072http://dx.doi.org/10.1021/acsaelm.8b00072
WEI Y, HENG C, YANG H, et al. Light-Induced charge transfer to achieve deep-red emission in SrSc2O4:Bi toward multiple optical applications [J]. Chem. Mater., 2022, 34(19):8831-8839. doi: 10.1021/acs.chemmater.2c02138http://dx.doi.org/10.1021/acs.chemmater.2c02138
LI Y, XIONG P, LIU G, et al. Visible and near-infrared emission in Ba3Sc4O9:Bi phosphor: An investigation on bismuth valence modification [J]. Inorg. Chem., 2021, 60(17):13510-13516. doi: 10.1021/acs.inorgchem.1c01835http://dx.doi.org/10.1021/acs.inorgchem.1c01835
LIU Q, FENG ZY, LI H, et al. Non‐rare‐earth UVC persistent phosphors enabled by bismuth doping [J]. Adv. Opt. Mater., 2021, 9(8):2002065. doi: 10.1002/adom.202002065http://dx.doi.org/10.1002/adom.202002065
LIU L, SHI J, LI Y, et al. Disguise as fluorescent powder: Ultraviolet-B persistent luminescence material without visible light for advanced information encryption and anti-counterfeiting applications [J]. Chem. Eng. J., 2022, 430:132884. doi: 10.1016/j.cej.2021.132884http://dx.doi.org/10.1016/j.cej.2021.132884
TAN Z, LI J, ZHANG C, et al. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: Photoluminescence Induced by Impurity doping [J]. Adv. Funct. Mater., 2018, 28(29):1801131. doi: 10.1002/adfm.201801131http://dx.doi.org/10.1002/adfm.201801131
LIU M, DUAN C-K, TANNER PA, et al. Understanding photoluminescence of Cs2ZrCl6 doped with post-transition-metal ions using first-principles calculations [J]. Phys. Rev. B. 2022, 105(19):195137. doi: 10.1103/physrevb.105.195137http://dx.doi.org/10.1103/physrevb.105.195137
LIU R, ZHANG W, LIU W, et al. Synthesis of a Bi3+-doped Cs2HfCl6 double perovskite with highly efficient blue light emission at room temperature [J]. Inorg. Chem., 2021, 60(14):10451-10458. doi: 10.1021/acs.inorgchem.1c01054http://dx.doi.org/10.1021/acs.inorgchem.1c01054
LUO J, WANG X, LI S, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites [J]. Nature. 2018, 563(7732):541-545. doi: 10.1038/s41586-018-0691-0http://dx.doi.org/10.1038/s41586-018-0691-0
LI X, LI W, XIA M, et al. Facile melting-crystallization synthesis of Cs2NaxAg1-xInCl6:Bi double perovskites for white light-emitting diodes [J]. Inorg. Chem., 2022, 61(12):5040-5047. doi: 10.1021/acs.inorgchem.1c03996http://dx.doi.org/10.1021/acs.inorgchem.1c03996
QAMAR SA, LIN T-W, Y-TTSAI, et al. Lead-free Rb2SnCl6:Bi perovskite nanocrystals for luminescence emission [J]. ACS Appl. Nano Mater., 2022, 5(5):7580-7587. doi: 10.1021/acsanm.2c01647http://dx.doi.org/10.1021/acsanm.2c01647
ARFIN H, KAUR J, SHEIKH T, et al. Bi3+‐Er3+ and Bi3+‐Yb3+ codoped Cs2AgInCl6 double perovskite near‐infrared emitters [J]. Angew. Chem. Int. Ed., 2020, 59(28):11307-11311. doi: 10.1002/anie.202002721http://dx.doi.org/10.1002/anie.202002721
ZENG Z, HUANG B, WANG X, et al. Multimodal luminescent Yb3+/Er3+/Bi3+‐doped perovskite single crystals for X‐ray detection and anti‐counterfeiting [J]. Adv. Mater., 2020, 32(43):2004506. doi: 10.1002/adma.202004506http://dx.doi.org/10.1002/adma.202004506
WANG C-Y, LIANG P, XIE R-J, et al. Highly efficient lead-free (Bi,Ce)-codoped Cs2Ag0.4Na0.6InCl6 double perovskites for white light-emitting diodes [J]. Chem. Mater., 2020, 32(18):7814-7821. doi: 10.1021/acs.chemmater.0c02463http://dx.doi.org/10.1021/acs.chemmater.0c02463
YANG S, WANG F, LI L, et al. Synthesis of Li+ and Bi3+codoped Cs2AgInCl6 lead-free double perovskites [J]. Opt. Mater., 2023, 139:113748. doi: 10.1016/j.optmat.2023.113748http://dx.doi.org/10.1016/j.optmat.2023.113748
JIN S, YUAN H, PANG T, et al. Boosting STE and Nd3+ NIR luminescence in Cs2AgInCl6 double perovskite via Na+/Bi3+‐induced local structure engineering [J]. Adv. Funct. Mater., 2023:2304577. doi: 10.1002/adfm.202304577http://dx.doi.org/10.1002/adfm.202304577
ZHOU B, LIU Z, FANG S, et al. Efficient white photoluminescence from self-trapped excitons in Sb3+/Bi3+-codoped Cs2NaInCl6 double perovskites with tunable dual-emission [J]. ACS Energy Letters. 2021, 6(9):3343-3351. doi: 10.1021/acsenergylett.1c01442http://dx.doi.org/10.1021/acsenergylett.1c01442
ZENG Z, SUN M, ZHANG S, et al. Rare‐earth‐based perovskite Cs2AgScCl6:Bi for strong full visible spectrum emission [J]. Adv. Funct. Mater., 2022, 32(32):2204780. doi: 10.1002/adfm.202204780http://dx.doi.org/10.1002/adfm.202204780
KANG F, ZHANG H, WONDRACZEK L, et al. Band-gap modulation in single Bi3+-doped yttrium–scandium–niobium vanadates for color tuning over the whole visible spectrum [J]. Chem. Mater., 2016, 28(8):2692-2703. doi: 10.1021/acs.chemmater.6b00277http://dx.doi.org/10.1021/acs.chemmater.6b00277
KANG F, PENG M, YANG X, et al. Broadly tuning Bi3+ emission via crystal field modulation in solid solution compounds (Y,Lu,Sc)VO4:Bi for ultraviolet converted white LEDs [J]. J. Mater. Chem. C. 2014, 2(30):6068-6076. doi: 10.1039/c4tc00238ehttp://dx.doi.org/10.1039/c4tc00238e
NI Q, MEI Z, LI C, et al. Realization of an optical thermometer via structural confinement and energy transfer [J]. Inorg. Chem., 2021, 60(24):19315-19327. doi: 10.1021/acs.inorgchem.1c03126http://dx.doi.org/10.1021/acs.inorgchem.1c03126
KANG F, SUN G, BOUTINAUD P, et al. Tuning the Bi3+-photoemission color over the entire visible region by manipulating secondary cations modulation in the ScVxP1-xO4:Bi3+ (0 ≤ x ≤ 1) solid solution [J]. J. Mater. Chem. C. 2019, 7(32):9865-9877. doi: 10.1039/c9tc01385ghttp://dx.doi.org/10.1039/c9tc01385g
LI X, LI P, WANG Z, et al. Color-tunable luminescence properties of Bi3+ in Ca5(BO3)3F via changing site occupation and energy transfer [J]. Chem. Mater., 2017, 29(20):8792-8803. doi: 10.1021/acs.chemmater.7b03151http://dx.doi.org/10.1021/acs.chemmater.7b03151
DANG P, LIANG S, LI G, et al. Full color luminescence tuning in Bi3+/Eu3+-doped LiCa3MgV3O12 garnet phosphors based on local lattice distortion and multiple energy transfers [J]. Inorg. Chem., 2018, 57(15):9251-9259. doi: 10.1021/acs.inorgchem.8b01271http://dx.doi.org/10.1021/acs.inorgchem.8b01271
ZHU X, WANG T, LIU H, et al. Achievement of full-visible-spectrum lighting in Bi3+-activated strontium gallates via lattice site occupancy engineering toward WLEDs applications [J]. Mater. Today Phys., 2023, 31:100968. doi: 10.1016/j.mtphys.2023.100968http://dx.doi.org/10.1016/j.mtphys.2023.100968
WU S, XIONG P, JIANG D, et al. Anionic regulation toward Bi3+ selective occupation for full-spectrum white light emission [J]. Inorg. Chem., 2023, 62(12):4894-4902. doi: 10.1021/acs.inorgchem.2c04243http://dx.doi.org/10.1021/acs.inorgchem.2c04243
YU H, CHAN J, DEVAKUMAR B, et al. Novel Ba3Lu4O9:Bi3+,Eu3+ phosphors for white LEDs: Efficient energy transfer, broad near-UV excitation band and green-yellow-orange-red color tunable emissions [J]. J. Lumin., 2021, 238:118291. doi: 10.1016/j.jlumin.2021.118291http://dx.doi.org/10.1016/j.jlumin.2021.118291
WANG J, LEI R, ZHAO S, et al. Color tunable Bi3+/Eu3+ co-doped La2ZnTiO6 double perovskite phosphor for dual-mode ratiometric optical thermometry [J]. J. Alloys Compd., 2021, 881:160601. doi: 10.1016/j.jallcom.2021.160601http://dx.doi.org/10.1016/j.jallcom.2021.160601
SHU-JUN X, JING C, LI-YUAN C, et al. Optimal doping content of red emitting Y4GeO8∶Bi3+,Eu3+ phosphor designed by response surface methodology [J]. Chinese J. Lumin., 2022, 43(5):633-641. doi: 10.37188/cjl.20220021http://dx.doi.org/10.37188/cjl.20220021
WU H, LI H, JIANG L, et al. Design of white-emitting optical temperature sensor based on energy transfer in a Bi3+, Eu3+ and Tb3+ doped YBO3 crystal [J]. J. Mater. Chem. C. 2021, 9(23):7264-7273. doi: 10.1039/d1tc01585khttp://dx.doi.org/10.1039/d1tc01585k
SUN J, SUN Z, LI Y, et al. Realization of plant growth lighting and temperature detecting based on novel Bi3+, Sm3+ and Mn4+ doped Ca2GdNbO6 double perovskite phosphors [J]. Opt. Mater., 2023, 145. doi: 10.1016/j.optmat.2023.114394http://dx.doi.org/10.1016/j.optmat.2023.114394
JIANG Z, LUO W, SUN Z, et al. Dual emission and energy transfer of Bi3+ and Mn4+ in double perovskite CaLaMgTaO6 phosphors for white light-emitting diodes [J]. Journal of Materials Science: Materials in Electronics. 2021, 32(5):6598-6606. doi: 10.1007/s10854-021-05375-xhttp://dx.doi.org/10.1007/s10854-021-05375-x
LIU Y, RONG X, LI M, et al. Incorporating rare‐earth terbium(III) ions into Cs2AgInCl6:Bi nanocrystals toward tunable photoluminescence [J]. Angew. Chem. Int. Ed., 2020, 59(28):11634-11640. doi: 10.1002/anie.202004562http://dx.doi.org/10.1002/anie.202004562
ZHANG W, ZHENG W, LI L, et al. Dual‐band‐tunable white‐light emission from Bi3+/Te4+ emitters in perovskite‐derivative Cs2SnCl6 microcrystals [J]. Angew. Chem. Int. Ed., 2022, 61(9):2116085. doi: 10.1002/anie.202116085http://dx.doi.org/10.1002/anie.202116085
RACHNA, SINGH A, LAMBA RS, et al. Self-trapped excitons mediated energy transfer to Sm3+ in Cs2AgIn(1–x)SmxCl6:Bi double perovskite nanocrystals [J]. J. Phys. Chem. C., 2022, 127(1):468-475. doi: 10.1021/acs.jpcc.2c07944http://dx.doi.org/10.1021/acs.jpcc.2c07944
YANG YL, YANG XC, YUAN JY, et al. Time‐resolved bright red to cyan color tunable mechanoluminescence from CaZnOS: Bi3+, Mn2+ for anti‐counterfeiting device and stress sensor [J]. Adv. Opt. Mater., 2021, 9(16):2100668. doi: 10.1002/adom.202100668http://dx.doi.org/10.1002/adom.202100668
YI WEI HY, GaoZhiyu, XingGongcheng, Maxim S. Molokeev and Guogang Li. Bismuth activated full spectral double perovskite luminescence materials by excitation and valence control for future intelligent LED lighting [J]. Chem Comm. 2020, 56:9170-9173. doi: 10.1039/d0cc03975fhttp://dx.doi.org/10.1039/d0cc03975f
HAN J, LI L, PENG M, et al. Toward Bi3+ red luminescence with no visible reabsorption through manageable energy interaction and crystal defect modulation in single Bi3+-doped ZnWO4 crystal [J]. Chem. Mater., 2017, 29(19):8412-8424. doi: 10.1021/acs.chemmater.7b02979http://dx.doi.org/10.1021/acs.chemmater.7b02979
SUN W, JIAO M, FAN L, et al. Design of a defect‐induced orange persistent luminescence phosphor BaZnGeO4:Bi3+ [J]. J. Am. Ceram. Soc., 2021, 105(3):2128-2139. doi: 10.1111/jace.18232http://dx.doi.org/10.1111/jace.18232
LI GH, YANG QH, WANG RR, et al. Cation defects succeed in triggering super stability of narrow-band blue-emitting phosphors Ca3Sc2Si3O12:Bi3+ for backlighting display application [J]. Ceram. Int., 2023, 49(17):28159-28166. doi: 10.1016/j.ceramint.2023.06.068http://dx.doi.org/10.1016/j.ceramint.2023.06.068
FENG Z, LOU B, YIN M, et al. First-principles study of Bi3+-related luminescence and electron and hole traps in (Y/Lu/La)PO4 [J]. Inorg. Chem., 2021, 60(7):4434-4446. doi: 10.1021/acs.inorgchem.0c03217http://dx.doi.org/10.1021/acs.inorgchem.0c03217
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构