1.中国石油大学(华东),理学院,山东 青岛 266580
2.河北大学物理科学与技术学院,河南 保定 071002
[ "王涛(1984-),男,山东菏泽人,博士,讲师,硕士研究生导师,2013年于北京交通大学获得博士学位,主要从事光电材料与器件方面的研究工作。E-mail:twang@upc.edu.cn" ]
[ "李盼来(1978-),男,河北河间人,博士,教授,博士研究生导师,2014年于北京交通大学获得博士学位,主要从事发光材料及其应用方面的研究工作。E-mail:li_panlai@126.com" ]
扫 描 看 全 文
王涛,张晓帅,李晓彤等.白光LEDs用Ca9.15La0.9(PO4)7:Eu2+, Mn2+材料的发光特性及能量传递[J].发光学报,
Wang Tao,Zhang Xiaoshuai,Li Xiaotong,et al.Luminescence properties and energy transfer of Ca9.15La0.9(PO4)7:Eu2+, Mn2+ for white LEDs[J].Chinese Journal of Luminescence,
王涛,张晓帅,李晓彤等.白光LEDs用Ca9.15La0.9(PO4)7:Eu2+, Mn2+材料的发光特性及能量传递[J].发光学报, DOI:10.37188/CJL.20230208
Wang Tao,Zhang Xiaoshuai,Li Xiaotong,et al.Luminescence properties and energy transfer of Ca9.15La0.9(PO4)7:Eu2+, Mn2+ for white LEDs[J].Chinese Journal of Luminescence, DOI:10.37188/CJL.20230208
利用高温固相法合成了Ca,9.15,La,0.9,(PO,4,),7,:0.05Eu,2+,, yMn,2+, 和 Ca,9.3,La,0.8,(PO,4,),7,:0.05Eu,2+,, yMn,2+,系列荧光粉。通过荧光粉的发射光谱和荧光衰减曲线证实Eu,2+,,Mn,2+,之间存在能量传递,且增大Mn,2+,的掺杂浓度,获得了从青光(绿光)到白光变化的荧光粉。材料的热稳定性显示Eu,2+,的两个不同颜色的发射峰表现出不同的温度猝灭行为。Ca,9.15,La,0.9,(PO,4,),7,:0.05Eu,2+,,0.35Mn,2+,的色坐标接近标准白光且色温与太阳光相近,光谱覆盖整个可见光区域。研究结果表明,材料在白光发光二极管方面有潜在的应用价值。
A series of Ca,9.15,La,0.9,(PO,4,),7,:0.05Eu,2+,, yMn,2+,and Ca,9.3,La,0.8,(PO,4,),7,:0.05Eu,2+,, yMn,2+,were synthesized by the high temperature solid-state method. The energy transfer from Eu,2+, to Mn,2+, was confirmed by the emission spectra and fluorescence decay curves. With increasing the concentration of Mn,2+,, the phosphor can produce the tuning emission from blue or green to white light. In addition, the thermal stability of the samples revealed that the two emission peaks of Eu,2+, with different colors exhibited different temperature quenching behaviors. The color coordinates of Ca,9.15,La,0.9,(PO,4,),7,:0.05Eu,2+,,0.35Mn,2+, are close to standard white light and the color temperature is similar to sunlight, which proves its potential application in white light emitting diodes (LEDs).
发光荧光粉能量传递
PhosphorLuminescenceEnergy transferCa9.15La0.9(PO4)7:0.05Eu2+, yMn2+
陈孔岚,张学亮,宋恩海,周亚运,袁健,樊婷,邓婷婷. CaTiF6·2H2O∶Mn4+窄带红色荧光粉的发光性能及其高显指暖白光LED应用[J],发光学报,2023, 44(2), 259-270.
ChenKonglan, ZhangXueliang, SongEnhai, ZhouYayun, Jian Yuan, Ting Fan. Tingting Deng. Luminescence Properties of Narrow-band Red Phosphor CaTiF6·2H2O:Mn4+ for Warm White Light-emitting Diodes with High Color Rendering Index [J], Chinese Journal of Luminescence, 2023, 44(2), 259-270.
朱坤领,游欢欢,高发明,贾永超. 窄带型Eu2+掺杂荧光粉理论研究进展[J],发光学报,2022, 43(9), 1405-1412. doi: 10.37188/cjl.20220189http://dx.doi.org/10.37188/cjl.20220189
ZhuKunlin, YouHuanhuan, GaoFaming, JiaYongchao. Advances in Theoretical Research on Eu2+ Doped Narrow-band Emitting Fluorescent Materials [J], Chinese Journal of Luminescence, 2022, 43(9), 1405-1412. doi: 10.37188/cjl.20220189http://dx.doi.org/10.37188/cjl.20220189
Hao Z., Zhang J., Zhang X., et al. Phase dependent photoluminescence and energy transfer in Ca2P2O7: Eu2+, Mn2+ phosphors for white LEDs[J]. J. Lumin., 2008, 128(5-6): 941-944. doi: 10.1016/j.jlumin.2007.11.035http://dx.doi.org/10.1016/j.jlumin.2007.11.035
Shang M., Li G., Geng D., et al. Blue Emitting Ca8La2(PO4)6O2:Ce3+/Eu2+ Phosphors with High Color Purity and Brightness for White LED: Soft-Chemical Synthesis, Luminescence, and Energy Transfer Properties[J]. J. Phys. Chem. C., 2012, 116(18): 10222-10231. doi: 10.1021/jp302252khttp://dx.doi.org/10.1021/jp302252k
Xie W., Mo Y., Zou C., et al. Broad Color Tuning and Eu3+-related Photoemission Enhancement via the Controllable Energy Transfer in La2MgGeO6:Eu3+, Bi3+ Phosphor[J]. Inorg. Chem. Front., 2018,5: 1076-1084. doi: 10.1039/c8qi00126jhttp://dx.doi.org/10.1039/c8qi00126j
Guo Q. F., Liao L. B., Mei L. F., et al. Color Tunable Photoluminescence and Energy Transfer Properties of Single Phase Ba10(PO4)6O:Eu2+, Mn2+ Phosphors. J. Solid State Chem, 2015, 232: 102-107. doi: 10.1016/j.jssc.2015.09.007http://dx.doi.org/10.1016/j.jssc.2015.09.007
Xu H., Wang L., Qu D., et al. Structure and photoluminescence properties of novel Sr6Ca4(PO4)6F2: Re (Re=Eu2+, Mn2+) phosphors with energy transfer for white-emitting LEDs[J]. Rsc Adv., 2017, 7(65): 41282-41288. doi: 10.1039/c7ra06817dhttp://dx.doi.org/10.1039/c7ra06817d
Wu P. P., Meng X. G., Xu Y. C., et al. Sm3+ doped NaSr2Nb5O15 novel orange-red phosphor[J]. Journal of Lasers.,2022,43(08):37-42.
Lü X. J., Xu J., Lin H., et al. Research progress of Pr3+ doped red long afterglow luminescent materials[J]. Acta Luminesca Sinica.,2022,43(03):327-340.
吕雪杰, 许杰, 林航, 林世盛, 王元生.Pr3+掺杂红色长余辉发光材料研究进展[J],发光学报,2022,43(3):327-340.
LyuXuejie, XuJie, Hang Lin, LinShisheng, WangYuansheng. Rresearch progress on Pr3+ doped red persistent luminescent materials [J], Chinese Journal of Luminescence, 2023, 43(3):327-340.
屈冰雁,王雷. 3d 过渡金属离子在无机化合物中的基态能级及变价趋势理论探索[J],发光学报,2022,43(12):1815-1822. doi: 10.37188/cjl.20220222http://dx.doi.org/10.37188/cjl.20220222
QuBingyan,Lei Wang.Theoretical Research on Ground State of 3d Transition Metal Ions in. doi: 10.37188/cjl.20220222http://dx.doi.org/10.37188/cjl.20220222
Inorganic Compounds and Their Charge Transition Tendencies[J],Chinese Journal of Luminescence,2022,43(12):1815-1822. doi: 10.37188/cjl.20220222http://dx.doi.org/10.37188/cjl.20220222
Chien-Hao Huang and Teng-Ming Chen.Ca9La(PO4)7:Eu2+,Mn2+: an emission-tunable phosphor through efficient energy transfer for white light-emitting diodes.Optics Express,2010,18(5):5089-5099. doi: 10.1364/oe.18.005089http://dx.doi.org/10.1364/oe.18.005089
Song Z., He L. Z., Liu Q. L. Preparation and luminescence properties of Eu2+-Mn2+ co-doped T-phase silicate phosphor[J]. Rare Metals.,2019,43(11):1243-1250.
Yu M., Lin J., Fang J. Silica spheres coated with YVO4 :Eu3+layers via sol-gel process: A
simple method to obtain spherical core-shell phosphors. Chem. Mater., 2005, 17: 1783-1791.
Liu X., Li C., Quan Z., et al. Tunable luminescence properties of CaIn2O4:Eu3+ phosphors. J. Phys. Chem. C, 2007, 111: 16601-16607. doi: 10.1021/jp074868ohttp://dx.doi.org/10.1021/jp074868o
Liu X., Yan L., Lin J. Synthesis and luminescent properties of LaAlO3:RE3+ (RE=Tm, Tb) nanocrystalline phosphors via a sol-gel process. J. Phys. Chem. C, 2009, 113: 8478-8483. doi: 10.1021/jp9013724http://dx.doi.org/10.1021/jp9013724
Paulose P. I., Jose G., Thomas V., et al. Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass[J]. J. Phys. Chem. Solids. 2003, 64(5): 841-846. doi: 10.1016/s0022-3697(02)00416-xhttp://dx.doi.org/10.1016/s0022-3697(02)00416-x
李凯,连洪洲,尚蒙蒙,林君.稀土发光材料中的能量传递与发光颜色调控[J].中国稀土学报,2017,35(01):19-41.
Li K., Lian H. Z., Shang M. M., et al. Energy transfer and luminescence color regulation in rare earth luminescent materials[J]. Journal of Chinese Rare Earth Society,2017,35(01):19-41.
Blasse G. Energy transfer in oxidic phosphors[J]. Physics Letters A,1968,28(6):444-445. doi: 10.1016/0375-9601(68)90486-6http://dx.doi.org/10.1016/0375-9601(68)90486-6
Dexter D. L., Schulman J. H. Theory of Concentration Quenching in Inorganic Phosphors[J]. J. Phys. Chem. C. 1954, 22(6): 1063-1070. doi: 10.1063/1.1740265http://dx.doi.org/10.1063/1.1740265
Guo N., Huang Y., You H., et al. Ca9Lu(PO4)7:Eu2+, Mn2+:A potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes[J]. Inorganic Chemistry.,2010,49(23):10907. doi: 10.1021/ic101749ghttp://dx.doi.org/10.1021/ic101749g
Antipenko B., Batyaev I., Ermolaev V., et al. Radiationless transfer of electron excitation energy between rare earth ions in POCl3-SnCl4 [J]. Optika Spektroskopiya.,1970,29(2):335.
Blasse G. Energy transfer in oxidic phosphors[J]. Physics Letters A,1968,28(6):444. doi: 10.1016/0375-9601(68)90486-6http://dx.doi.org/10.1016/0375-9601(68)90486-6
Geng D., Li G., Shang M., et al. Color tuning via energy transfer in Sr3In(PO4)3:Ce3+/Tb3+/Mn2+ phosphors[J]. J. Phys. Chem. 2012, 22(28): 14262-14271. doi: 10.1039/c2jm32392chttp://dx.doi.org/10.1039/c2jm32392c
Hu J. G., Wan G. J., Hu X. F., et al. Development of calcium barium phosphate cerium and manganese red phosphor[J]. Journal of Chinese Rare Earth Science., 2005, (05):537-540.
Yang W J., Chen T.M. Ce3+/Eu2+codoped Ba2ZnS3:A blue radiation-converting phosphor for white light-emitting diodes[J]. Appl. Phys.Lett.,2007,90:171908. doi: 10.1063/1.2731685http://dx.doi.org/10.1063/1.2731685
Dexter D. L., Schulman J. H. Theory of concentration quenching in inorganic phosphors[J]. The Journal of Chemical Physics.,1954,22(6):1063-1070. doi: 10.1063/1.1740265http://dx.doi.org/10.1063/1.1740265
Reisfeld R., Lieblich-soffer N. Energy transfer from UO22+ to Sm3+ in phosphate glass[J]. Journal of Solid State Chemistry.,1979,28(3):391-395. doi: 10.1016/0022-4596(79)90090-2http://dx.doi.org/10.1016/0022-4596(79)90090-2
Ueda J., Dorenbos P., Bos A., et al. Insight in the Thermal Quenching Mechanism for Y3Al5O12:Ce3+ through Thermoluminescence Excitation Spectroscopy[J]. J. Phys. Chem. C 2015, 119, 44: 25003-25008. doi: 10.1021/acs.jpcc.5b08828http://dx.doi.org/10.1021/acs.jpcc.5b08828
Yang J., Zhang J., Gao Z., et al. Enhanced photoluminescence and thermal stability in solid solution Ca1-xSrxSc2O4:Ce3+ (x=0–1) via crystal field regulation and site-preferential occupation[J]. Inorg. Chem. Front., 2019,6: 2004-2013. doi: 10.1039/c9qi00443bhttp://dx.doi.org/10.1039/c9qi00443b
Blasse G., Grabmaier B. C. Luminescent Materials. Springer-Verlag: Berlin, 1994. doi: 10.1007/978-3-642-79017-1http://dx.doi.org/10.1007/978-3-642-79017-1
Han J. Y., Bin I. W., Kim D., et al. New full-color-emitting phosphor, Eu2+-doped Na2-xAl2-xSixO4(0≤x≤1), obtained using phase transitions for solid-state white lighting[J]. J. Mater. Chem., 2012, 22(12): 5374-5381. doi: 10.1039/c2jm15501jhttp://dx.doi.org/10.1039/c2jm15501j
Ruan J., Xie R. J., Hirosaki N., et al. Nitrogen gas pressure synthesis and photoluminescent properties of orange-red SrAlSi4N7:Eu2+ phosphors for white light-emitting diodes[J]. J. Am. Ceram. Soc., 2011, 94(2): 536-542. doi: 10.1111/j.1551-2916.2010.04104.xhttp://dx.doi.org/10.1111/j.1551-2916.2010.04104.x
George N. C., Birkel A., Brgoch J., et al. Average and Local Structural Origins of the Optical Properties of the Nitride Phosphor La3-xCexSi6N11(0 George N., Pell A., Dantelle G., et al. Local Environments of Dilute Activator Ions in the Solid-State Lighting Phosphor Y3-xCexAl5O12[J]. Cheminform., 2014, 45(2): 3979-399. doi: 10.1002/chin.201402006http://dx.doi.org/10.1002/chin.201402006
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构