浏览全部资源
扫码关注微信
1.上海理工大学科技发展研究院 技术转移中心, 上海 200093
2.上海理工大学 材料与化学学院, 上海 200093
[ "闵华(1975-),男,上海人,硕士,高级技术经纪人,2015年于上海理工大学获得硕士学位,主要从事材料成型及化工装备过程控制。" ]
[ "李颖(1981-),女,内蒙古乌兰浩特人,博士,副教授,硕士生导师,2009年于同济大学获得博士学位,主要从事稀土/高分子荧光杂化材料及其生物化学传感应用的研究。 E-mail: liying@usst.edu.cn" ]
纸质出版日期:2023-11-05,
收稿日期:2023-07-30,
修回日期:2023-08-17,
移动端阅览
闵华,刘丽,夏继绩等.镧系Eu3+/PMMA聚合物杂化探针的制备及其对唾液酸的传感检测应用[J].发光学报,2023,44(11):2076-2080.
MIN Hua,LIU Li,XIA Jiji,et al.Preparation and Sensing Detection Application of Lanthanide Eu3+/PMMA Polymer Hybrid Probe[J].Chinese Journal of Luminescence,2023,44(11):2076-2080.
闵华,刘丽,夏继绩等.镧系Eu3+/PMMA聚合物杂化探针的制备及其对唾液酸的传感检测应用[J].发光学报,2023,44(11):2076-2080. DOI: 10.37188/CJL.20230179.
MIN Hua,LIU Li,XIA Jiji,et al.Preparation and Sensing Detection Application of Lanthanide Eu3+/PMMA Polymer Hybrid Probe[J].Chinese Journal of Luminescence,2023,44(11):2076-2080. DOI: 10.37188/CJL.20230179.
设计合成了一种Eu
3+
离子功能化的聚合物基稀土杂化探针。利用苯甲酰三氟丙酮(BFA)与镧系Eu
3+
进行配位反应得到配合物Eu(BFA)
3
后再进一步与MMA单体进行聚合制备得到聚合物杂化探针分子Eu⁃(BFA)
3
@PMMA,对Eu(BFA)
3
@PMMA的结构和荧光性能进行了详细的探究,并且将其用于肿瘤标志物唾液酸(SA)的传感检测应用。研究结果表明,SA能对Eu(BFA)
3
@PMMA的荧光产生明显的猝灭效果。此外,在最佳激发波长为325 nm时进行荧光性能对比实验发现Eu(BFA)
3
@PMMA对SA具有较强的选择性和抗干扰能力,且检出限较低。
In this paper, a polymer-based rare earth hybrid probe functionalized by Eu
3+
was designed and synthesized. The coordination reaction between benzoyl trifluoroacetone (BFA) and lanthanide Eu
3+
was used to obtain the complex Eu(BFA)
3
, which was further prepared by polymerization with MMA monomer to obtain polymer hybrid probe Eu(BFA)
3
@PMMA. The structure and fluorescence properties of Eu(BFA)
3
@PMMA were investigated in detail. It is also used in the sensor detection of tumor marker sialic acid (SA). The results showed that SA can produce a significant quenching effect on the fluorescence of Eu(BFA)
3
@PMMA. In addition, fluorescence properties contrast experiments at excitation wavelength of 325 nm showed that Eu(BFA)
3
@PMMA had strong selectivity and anti-interference ability for SA, and the detection limit was low.
镧系配合物杂化探针唾液酸荧光传感
lanthanide complexeshybrid probessialic acidfluorescence sensing
CHEN S N, CHANG R, LIN L T, et al. MicroRNA in ovarian cancer: biology, pathogenesis, and therapeutic opportunities [J]. Int. J. Environ. Res. Public Health, 2019, 16(9): 1510. doi: 10.3390/ijerph16091510http://dx.doi.org/10.3390/ijerph16091510
DALL'OLIO F, CHIRICOLO M. Sialyltransferases in cancer [J]. Glycoconj. J., 2001, 18(11): 841-850. doi: 10.1023/a:1022288022969http://dx.doi.org/10.1023/a:1022288022969
REGUEIRO-FIGUEROA M, DJANASHVILI K, ESTEBAN-GÓMEZ D, et al. Molecular recognition of sialic acid by lanthanide(III) complexes through cooperative two-site binding [J]. Inorg. Chem., 2010, 49(9): 4212-4223. doi: 10.1021/ic902461ghttp://dx.doi.org/10.1021/ic902461g
LI S, LIU J L, LU Y L, et al. Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection [J]. Biosens. Bioelectron., 2018, 117: 32-39. doi: 10.1016/j.bios.2018.05.062http://dx.doi.org/10.1016/j.bios.2018.05.062
SANKOH S, THAMMAKHET C, NUMNUAM A, et al. 4-mercaptophenylboronic acid functionalized gold nanoparticles for colorimetric sialic acid detection [J]. Biosens. Bioelectron., 2016, 85: 743-750. doi: 10.1016/j.bios.2016.05.083http://dx.doi.org/10.1016/j.bios.2016.05.083
JAYEOYE T J, CHEEWASEDTHAM W, PUTSON C, et al. Colorimetric determination of sialic acid based on boronic acid-mediated aggregation of gold nanoparticles [J]. Microchim. Acta, 2018, 185(9): 409. doi: 10.1007/s00604-018-2951-yhttp://dx.doi.org/10.1007/s00604-018-2951-y
姚静静, 杨宇, 顾鑫鑫, 等. 基于SnO2/TiO2/Au NPs纳米复合材料发展光电化学方法特异性检测唾液酸 [J]. 上海师范大学学报(自然科学版), 2021, 50(6): 663-671.
YAO J J, YANG Y, GU X X, et al. The development of photoelectrochemical method for specific detection of sialic acid based on SnO2/TiO2/Au NPs [J]. J. Shanghai Norm. Univ. (Nat. Sci.), 2021, 50(6): 663-671. (in Chinese)
HAO J N, LI Y S. Concurrent modulation of competitive mechanisms to design stimuli-responsive Ln-MOFs: a light-operated dual-mode assay for oxidative DNA damage [J]. Adv. Funct. Mater., 2019, 29(36): 1903058. doi: 10.1002/adfm.201903058http://dx.doi.org/10.1002/adfm.201903058
HOU S L, DONG J, TANG M H, et al. Triple-interpenetrated lanthanide-organic framework as dual wave bands self-calibrated pH luminescent probe [J]. Anal. Chem., 2019, 91(8): 5455-5460. doi: 10.1021/acs.analchem.9b00848http://dx.doi.org/10.1021/acs.analchem.9b00848
LIU K, ZHANG J, XU L, et al. Film-based fluorescence sensing: a “chemical nose” for nicotine [J]. Chem. Commun., 2019, 55(84): 12679-12682. doi: 10.1039/c9cc06771jhttp://dx.doi.org/10.1039/c9cc06771j
ZHOU Y, ZHANG D N, XING W Z, et al. Ratiometric and turn-on luminescence detection of water in organic solvents using a responsive europium-organic framework [J]. Anal. Chem., 2019, 91(7): 4845-4851. doi: 10.1021/acs.analchem.9b00493http://dx.doi.org/10.1021/acs.analchem.9b00493
WU T, BOUŘ P. Specific circularly polarized luminescence of Eu(Ⅲ), Sm(Ⅲ), and Er(Ⅲ) induced by N-acetylneuraminic acid [J]. Chem. Commun., 2018, 54(14): 1790-1792. doi: 10.1039/c7cc09463ahttp://dx.doi.org/10.1039/c7cc09463a
HEFFERN M C, MATOSZIUK L M, MEADE T J. Lanthanide probes for bioresponsive imaging [J]. Chem. Rev., 2014, 114(8): 4496-4539. doi: 10.1021/cr400477thttp://dx.doi.org/10.1021/cr400477t
BUNZLI J C G. Lanthanide luminescence for biomedical analyses and imaging [J]. Chem. Rev., 2010, 110(5): 2729-2755. doi: 10.1021/cr900362ehttp://dx.doi.org/10.1021/cr900362e
梁宇. 基于铕(Ⅲ)配位聚合物的天线效应在药物分析中的应用研究 [D]. 重庆: 西南大学, 2021. doi: 10.1016/j.talanta.2021.122270http://dx.doi.org/10.1016/j.talanta.2021.122270
LIANG Y. Research on the Application of Antenna Effect Based on Europium (Ⅲ) Coordination Polymer Particles in Pharmaceutical Analysis [D]. Chongqing: Southwest University, 2021. (in Chinese). doi: 10.1016/j.talanta.2021.122270http://dx.doi.org/10.1016/j.talanta.2021.122270
郭春芳. 稀土铕配合物发光材料的研究进展 [J]. 广州化学, 2018, 43(5): 68-72. doi: 10.16560/j.cnki.gzhx.20180511http://dx.doi.org/10.16560/j.cnki.gzhx.20180511
GUO C F. Progress on luminescent materials of rare-earth europium complexes [J]. Guangzhou Chem., 2018, 43(5): 68-72. (in Chinese). doi: 10.16560/j.cnki.gzhx.20180511http://dx.doi.org/10.16560/j.cnki.gzhx.20180511
OUCHI K, SAITO S, SHIBUKAWA M. New molecular motif for recognizing sialic acid using emissive lanthanide-macrocyclic polyazacarboxylate complexes: deprotonation of a coordinated water molecule controls specific binding [J]. Inorg. Chem., 2013, 52(11): 6239-6241. doi: 10.1021/ic400725ahttp://dx.doi.org/10.1021/ic400725a
ZENG Y, QIU B, WANG F F, et al. Transparent films based on functionalized poly (ionic liquids) coordinating to photoactive lanthanide (Eu3+, Tb3+) and poly (methyl methacrylate): luminescence and chemical sensing [J]. Opt. Mater., 2020, 107: 110149. doi: 10.1016/j.optmat.2020.110149http://dx.doi.org/10.1016/j.optmat.2020.110149
刘丹, 王忠刚. 聚合物稀土配合物发光材料的合成与性能研究 [J]. 高分子通报, 2011(9): 92-99. doi: 10.1002/pi.2810http://dx.doi.org/10.1002/pi.2810
LIU D, WANG Z G. Synthesis and fluorescence properties of polymer rare earth complexes [J]. Polym. Bull., 2011(9): 92-99. (in Chinese). doi: 10.1002/pi.2810http://dx.doi.org/10.1002/pi.2810
0
浏览量
171
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构