浏览全部资源
扫码关注微信
1.郑州轻工业大学 电气信息工程学院, 河南 郑州 450002
2.郑州轻工业大学 电子信息学院, 河南 郑州 450002
3.郑州轻工业大学 量子科技研究院, 河南 郑州 450002
[ "张培(1985-),男,河南滑县人,博士,讲师,2014年于南京大学获得博士学位,主要从事纳米材料的制备及其光学特性研究方面的研究。zhangpei@zzuli.edu.cn " ]
[ "任林娇(1987-),女,河南济源人,博士,讲师,2015年于重庆大学获得博士学位,主要从事纳米荧光材料的制备及生物荧光传感检测的研究。 E-mail: renlinjiao@zzuli.edu.cn" ]
[ "姜利英(1981-),女,河南郾城人,博士,教授,2007年于中国科学院电子学研究所获得博士学位,主要从事生物传感器及检测微系统方面的研究。" ]
纸质出版日期:2023-11-05,
收稿日期:2023-07-27,
修回日期:2023-08-13,
移动端阅览
张培,柴鑫毅,李少君等.硫醇⁃烯交联增强碳量子点发光效率机理研究[J].发光学报,2023,44(11):1990-2001.
ZHANG Pei,CHAI Xinyi,LI Shaojun,et al.Investigation on Mechanism of Enhanced Luminescence Efficiency of Carbon Quantum Dots Through Thiol-ene Cross-linking[J].Chinese Journal of Luminescence,2023,44(11):1990-2001.
张培,柴鑫毅,李少君等.硫醇⁃烯交联增强碳量子点发光效率机理研究[J].发光学报,2023,44(11):1990-2001. DOI: 10.37188/CJL.20230173.
ZHANG Pei,CHAI Xinyi,LI Shaojun,et al.Investigation on Mechanism of Enhanced Luminescence Efficiency of Carbon Quantum Dots Through Thiol-ene Cross-linking[J].Chinese Journal of Luminescence,2023,44(11):1990-2001. DOI: 10.37188/CJL.20230173.
通过溶剂热反应法制备了N和O含量不同的碳量子点(CQDs)溶液,利用“点击”化学反应将CQDs与非计量硫醇⁃烯(OSTE)聚合物交联固化,形成CQDs/OSTE复合材料。固化后,O⁃CQDs的荧光量子产率从液态下的2.6%提高到16.5%,增大倍数约为6倍;N,O⁃CQDs的荧光量子产率从液态下的4.5%提高到17.6%,增大倍数约为4倍。通过微结构和光学特性分析,我们认为交联固化后与氧相关的非辐射复合中心减少、非辐射跃迁过程抑制以及N和S的协同效应是提高CQDs材料发光效率的主要原因。本文的研究成果有望为CQDs的固态转化、表面功能化以及荧光增强提供一种有效、便捷的方法,从而促进CQDs在发光二极管、激光器和发光太阳能聚光器等领域的应用。
The carbon quantum dots(CQDs) containing different N, O contents were prepared by using solvothermal reaction, and the CQDs/OSTE composites were obtained quickly through cross-linking and curing the CQDs with the off-stoichiometric thiol-ene (OSTE) polymer
via
the reaction of “click” chemistry. It is found the fluorescence quantum yield(QY)of O-CQDs and N,O-CQDs were increased to 16.5% and 17.6%, respectively. Compared with their QYs(2.6% and 4.5%)in the liquid environment, the enhancement of about 6 and 4 times was achieved, respectively. By analyzing the changes of microstructure and optical properties of CQDs materials before and after curing, we suggested that the enhanced PL QY might originate mainly from the reduction of the oxygen-related non-radiative recombination center, the suppression of the non-radiative transition probability and the synergistic effect of N and S. Our results provide a convenient and efficient method for solid state transformation, surface functionalization and fluorescence enhancement of CQDs, which will promote the application of CQDs in light-emitting diodes, lasers and luminescent solar concentrators.
碳量子点非计量硫醇-烯聚合物交联增强荧光表面态与氧相关的发光中心
carbon quantum dotsoff-stoichiometric thiol-ene polymercross-linking enhanced emissionsurface stateluminescence center related to oxygen
AUBERT T, GOLOVATENKO A A, SAMOLI M, et al. General expression for the size-dependent optical properties of quantum dots [J]. Nano Lett., 2022, 22(4): 1778-1785. doi: 10.1021/acs.nanolett.2c00056http://dx.doi.org/10.1021/acs.nanolett.2c00056
LIU J J, ZHANG X J, JI Y, et al. Rational energy band alignment and Au nanoparticles in surface plasmon enhanced Si‐based perovskite quantum dot light‐emitting diodes [J]. Adv. Opt. Mater., 2018, 6(19): 1800693. doi: 10.1002/adom.201800693http://dx.doi.org/10.1002/adom.201800693
ZHANG P, LI S J, LI D K, et al. Quantum size-dependent luminescence and nonlinear optical properties of silicon quantum dots/SiO2 multilayer [J]. Opt. Laser Technol., 2023, 157: 108706. doi: 10.1016/j.optlastec.2022.108706http://dx.doi.org/10.1016/j.optlastec.2022.108706
WANG B Y, CAI H J, WATERHOUSE G I N, et al. Carbon dots in bioimaging, biosensing and therapeutics: a comprehensive review [J]. Small Sci., 2022, 2(6): 2200012. doi: 10.1002/smsc.202200012http://dx.doi.org/10.1002/smsc.202200012
张艺, 邢晶晶, 孙思佳, 等. 绿色方法合成纳米碳点及对Fe3+的特异性荧光检测 [J]. 发光学报, 2020, 41(10): 1249-1254. doi: 10.37188/cjl.20200174http://dx.doi.org/10.37188/cjl.20200174
ZHANG Y, XING J J, SUN S J, et al. Green synthesis of carbon nanodots and their application in specific fluorescence detection of Fe3+ [J]. Chin. J. Lumin., 2020, 41(10): 1249-1254. (in Chinese). doi: 10.37188/cjl.20200174http://dx.doi.org/10.37188/cjl.20200174
YAO Y, ZHANG H Y, HU K S, et al. Carbon dots based photocatalysis for environmental applications [J]. J. Environ. Chem. Eng., 2022, 10(2): 107336. doi: 10.1016/j.jece.2022.107336http://dx.doi.org/10.1016/j.jece.2022.107336
孟维雪, 杨柏, 卢思宇. 从碳点到碳化聚合物点: 发展和挑战 [J]. 发光学报, 2021, 42(8): 1075-1094. doi: 10.37188/cjl.20210155http://dx.doi.org/10.37188/cjl.20210155
MENG W X, YANG B, LU S Y. From carbon dots to carbonized polymer dots: development and challenges [J]. Chin. J. Lumin., 2021, 42(8): 1075-1094. (in Chinese). doi: 10.37188/cjl.20210155http://dx.doi.org/10.37188/cjl.20210155
王琴, 杨雯, 庄镜儒, 等. 生物基碳点制备及其在LED器件上的应用 [J]. 发光学报, 2021, 42(8): 1314-1322. doi: 10.37188/CJL.20210159http://dx.doi.org/10.37188/CJL.20210159
WANG Q, YANG W, ZHUANG J R, et al. Preparation and application of bio-based carbon dots for LED chips [J]. Chin. J. Lumin., 2021, 42(8): 1314-1322. (in Chinese). doi: 10.37188/CJL.20210159http://dx.doi.org/10.37188/CJL.20210159
ZHAO H G, LIU G J, YOU S J, et al. Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators [J]. Energy Environ. Sci., 2021, 14(1): 396-406. doi: 10.1039/d0ee02235ghttp://dx.doi.org/10.1039/d0ee02235g
GHOSH D, SARKAR K, DEVI P, et al. Current and future perspectives of carbon and graphene quantum dots: from synthesis to strategy for building optoelectronic and energy devices [J]. Renewable Sustain. Energy Rev., 2021, 135: 110391. doi: 10.1016/j.rser.2020.110391http://dx.doi.org/10.1016/j.rser.2020.110391
GUO J Z, LU Y S, XIE A Q, et al. Yellow‐emissive carbon dots with high solid‐state photoluminescence [J]. Adv. Funct. Mater., 2022, 32(20): 2110393. doi: 10.1002/adfm.202110393http://dx.doi.org/10.1002/adfm.202110393
TIAN Z, ZHANG X T, LI D, et al. Full‐color inorganic carbon dot phosphors for white‐light‐emitting diodes [J]. Adv. Opt. Mater., 2017, 5(19): 1700416. doi: 10.1002/adom.201700416http://dx.doi.org/10.1002/adom.201700416
WANG Z F, YUAN F L, LI X H, et al. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white‐light‐emitting diodes [J]. Adv. Mater., 2017, 29(37): 1702910. doi: 10.1002/adma.201702910http://dx.doi.org/10.1002/adma.201702910
ZDRAŽIL L, KALYTCHUK S, HOLÁ K, et al. A carbon dot-based tandem luminescent solar concentrator [J]. Nanoscale, 2020, 12(12): 6664-6672. doi: 10.1039/c9nr10029fhttp://dx.doi.org/10.1039/c9nr10029f
SHIN S, KANG K, JANG H, et al. Ligand-crosslinking strategy for efficient quantum dot light‐emitting diodes via thiol‐ene click chemistry [J]. Small Methods, 2023, 7(9): 2300206. doi: 10.1002/smtd.202300206http://dx.doi.org/10.1002/smtd.202300206
NAZIM M, KIM J H. Fluorescent N-doped graphene quantum dots embedded in transparent polymer films for photon-downconversion applications [J]. ACS Appl. Nano Mater., 2020, 3(3): 2322-2335. doi: 10.1021/acsanm.9b02436http://dx.doi.org/10.1021/acsanm.9b02436
MARININS A, ZANDI SHAFAGH R, VAN DER WIJNGAART W, et al. Light-converting polymer/Si nanocrystal composites with stable 60%-70% quantum efficiency and their glass laminates [J]. ACS Appl. Mater. Interfaces, 2017, 9(36): 30267-30272. doi: 10.1021/acsami.7b09265http://dx.doi.org/10.1021/acsami.7b09265
HUANG J, ZHOU J J, HARALDSSON T, et al. Triplex glass laminates with silicon quantum dots for luminescent solar concentrators [J]. Sol. RRL, 2020, 4(9): 2000195. doi: 10.1002/solr.202000195http://dx.doi.org/10.1002/solr.202000195
GU G W, ZHENG Z D, ZHANG H H, et al. Re-absorption-free perovskite quantum dots for boosting the efficiency of luminescent solar concentrator [J]. J. Lumin., 2022, 248: 118963. doi: 10.1016/j.jlumin.2022.118963http://dx.doi.org/10.1016/j.jlumin.2022.118963
SONG Z H, ZHENG Z D, ZHANG Y, et al. The trade-off between optical efficiency and aesthetic properties of InP/ZnS quantum dots based luminescent solar concentrators [J]. J. Lumin., 2023, 256: 119622. doi: 10.1016/j.jlumin.2022.119622http://dx.doi.org/10.1016/j.jlumin.2022.119622
RAVEENDRAN P T V, RENUKA N K. Hydrothermal synthesis of biomass-derived carbon nanodots: characterization and applications [J]. Mater. Chem. Phys., 2022, 288: 126236. doi: 10.1016/j.matchemphys.2022.126236http://dx.doi.org/10.1016/j.matchemphys.2022.126236
REN J, WEBER F, WEIGERT F, et al. Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots [J]. Nanoscale, 2019, 11(4): 2056-2064. doi: 10.1039/c8nr08595ahttp://dx.doi.org/10.1039/c8nr08595a
LIU C, BAO L, YANG M L, et al. Surface sensitive photoluminescence of carbon nanodots: coupling between the carbonyl group and π-electron system [J]. J. Phys. Chem. Lett., 2019, 10(13): 3621-3629. doi: 10.1021/acs.jpclett.9b01339http://dx.doi.org/10.1021/acs.jpclett.9b01339
QI B P, HU H, BAO L, et al. An efficient edge-functionalization method to tune the photoluminescence of graphene quantum dots [J]. Nanoscale, 2015, 7(14): 5969-5973. doi: 10.1039/c5nr00842ehttp://dx.doi.org/10.1039/c5nr00842e
LADDHA H, YADAV P, AGARWAL M, et al. Quick and hassle-free smartphone's RGB-based color to photocatalytic degradation rate assessment of malachite green dye in water by fluorescent Zr⁃N⁃S co-doped carbon dots [J]. Environ. Sci. Pollut. Res., 2022, 29(37): 56684-56695. doi: 10.1007/s11356-022-19808-5http://dx.doi.org/10.1007/s11356-022-19808-5
ZHAN Y, GENG T, LIU Y L, et al. Near-ultraviolet to near-infrared fluorescent nitrogen-doped carbon dots with two-photon and piezochromic luminescence [J]. ACS Appl. Mater. Interfaces, 2018, 10(33): 27920-27927. doi: 10.1021/acsami.8b07498http://dx.doi.org/10.1021/acsami.8b07498
JIANG K, SUN S, ZHANG L, et al. Red, green, and blue luminescence by carbon dots: full‐color emission tuning and multicolor cellular imaging [J]. Angew. Chem., 2015, 127(18): 5450-5453. doi: 10.1002/ange.201501193http://dx.doi.org/10.1002/ange.201501193
WEI S Q, YIN X H, LI H Y, et al. Multi‐color fluorescent carbon dots: graphitized sp2 conjugated domains and surface state energy level Co‐modulate band gap rather than size effects [J]. Chem. Eur. J., 2020, 26(36): 8129-8136. doi: 10.1002/chem.202000763http://dx.doi.org/10.1002/chem.202000763
LI D, JING P T, SUN L H, et al. Near‐infrared excitation/emission and multiphoton‐induced fluorescence of carbon dots [J]. Adv. Mater., 2018, 30(13): 1705913. doi: 10.1002/adma.201870092http://dx.doi.org/10.1002/adma.201870092
WANG W P, LU Y C, HUANG H, et al. Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging [J]. Analyst, 2014, 139(7): 1692-1696. doi: 10.1039/c3an02098chttp://dx.doi.org/10.1039/c3an02098c
BAO L, LIU C, ZHANG Z L, et al. Photoluminescence‐tunable carbon nanodots: surface‐state energy‐gap tuning [J]. Adv. Mater., 2015, 27(10): 1663-1667. doi: 10.1002/adma.201405070http://dx.doi.org/10.1002/adma.201405070
LI Y, HU Y, ZHAO Y, et al. An electrochemical avenue to green‐luminescent graphene quantum dots as potential electron‐acceptors for photovoltaics [J]. Adv. Mater., 2011, 23(6): 776-780. doi: 10.1002/adma.201003819http://dx.doi.org/10.1002/adma.201003819
XU Q, PU P, ZHAO J G, et al. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe (III) detection [J]. J. Mater. Chem. A, 2015, 3(2): 542-546. doi: 10.1039/c4ta05483khttp://dx.doi.org/10.1039/c4ta05483k
LIU S, TIAN J Q, WANG L, et al. Hydrothermal treatment of grass: a low‐cost, green route to nitrogen‐doped, carbon‐rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label‐free detection of Cu (II) ions [J]. Adv. Mater., 2012, 24(15): 2037-2041. doi: 10.1002/adma.201200164http://dx.doi.org/10.1002/adma.201200164
GAN Z X, XU H, HAO Y L. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges [J]. Nanoscale, 2016, 8(15): 7794-7807. doi: 10.1039/c6nr00605ahttp://dx.doi.org/10.1039/c6nr00605a
GAN Z X, XIONG S J, WU X L, et al. Mechanism of photoluminescence from chemically derived graphene oxide: role of chemical reduction [J]. Adv. Opt. Mater., 2013, 1(12): 926-932. doi: 10.1002/adom.201300368http://dx.doi.org/10.1002/adom.201300368
YU J J, LIU C, YUAN K, et al. Luminescence mechanism of carbon dots by tailoring functional groups for sensing Fe3+ ions [J]. Nanomaterials, 2018, 8(4): 233. doi: 10.3390/nano8040233http://dx.doi.org/10.3390/nano8040233
DONG Y Q, PANG H C, YANG H B, et al. Carbon‐based dots Co‐doped with nitrogen and sulfur for high quantum yield and excitation‐independent emission [J]. Angew. Chem., 2013, 125(30): 7954-7958. doi: 10.1002/ange.201301114http://dx.doi.org/10.1002/ange.201301114
ZHENG H Z, WANG Q L, LONG Y J, et al. Enhancing the luminescence of carbon dots with a reduction pathway [J]. Chem. Commun., 2011, 47(38): 10650-10652. doi: 10.1039/c1cc14741bhttp://dx.doi.org/10.1039/c1cc14741b
GAN Z X, XU H, FU Y. Photon reabsorption and nonradiative energy-transfer-induced quenching of blue photoluminescence from aggregated graphene quantum dots [J]. J. Phys. Chem. C, 2016, 120(51): 29432-29438. doi: 10.1021/acs.jpcc.6b10704http://dx.doi.org/10.1021/acs.jpcc.6b10704
GAN Z X, LIU L Z, WANG L, et al. Bright, stable, and tunable solid-state luminescence of carbon nanodot organogels [J]. Phys. Chem. Chem. Phys., 2018, 20(26): 18089-18096. doi: 10.1039/c8cp02069hhttp://dx.doi.org/10.1039/c8cp02069h
GENC R, ALAS M O, HARPUTLU E, et al. High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots [J]. Sci. Rep., 2017, 7(1): 11222. doi: 10.1038/s41598-017-11347-1http://dx.doi.org/10.1038/s41598-017-11347-1
LAKOWICZ J R. Principles of Fluorescence Spectroscopy [M]. New York: Springer Press, 2006. doi: 10.1007/978-0-387-46312-4_18http://dx.doi.org/10.1007/978-0-387-46312-4_18
GAO F, MA S Y, LI J, et al. Rational design of high quality citric acid-derived carbon dots by selecting efficient chemical structure motifs [J]. Carbon, 2017, 112: 131-141. doi: 10.1016/j.carbon.2016.10.089http://dx.doi.org/10.1016/j.carbon.2016.10.089
LIU F, JANG M H, HA H D, et al. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence [J]. Adv. Mater., 2013, 25(27): 3657-3662. doi: 10.1002/adma.201300233http://dx.doi.org/10.1002/adma.201300233
NIE H, LI M J, LI Q S, et al. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing [J]. Chem. Mater., 2014, 26(10): 3104-3112. doi: 10.1021/cm5003669http://dx.doi.org/10.1021/cm5003669
BAO L, ZHANG Z L, TIAN Z Q, et al. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism [J]. Adv. Mater., 2011, 23(48): 5801-5806. doi: 10.1002/adma.201102866http://dx.doi.org/10.1002/adma.201102866
TAO S Y, ZHU S J, FENG T L, et al. Crosslink‐enhanced emission effect on luminescence in polymers: advances and perspectives [J]. Angew. Chem., 2020, 132(25): 9910-9924. doi: 10.1002/ange.201916591http://dx.doi.org/10.1002/ange.201916591
0
浏览量
513
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构