浏览全部资源
扫码关注微信
1.太原理工大学 物理学院, 山西 太原 030024
2.太原理工大学材料科学与工程学院 新型碳材料研究所, 山西 太原 030024
[ "李雅珍(1997-),女,河北张家口人,硕士,2023年于太原理工大学获得硕士学位,主要从事稀土上转换发光材料的研究。" ]
[ "田碧凝(1988-),女,河北石家庄人,博士,研究员,硕士生导师,2023 年于大连海事大学获得博士学位,主要从事微纳光电功能材料的研究。" ]
纸质出版日期:2023-11-05,
收稿日期:2023-05-12,
修回日期:2023-05-27,
移动端阅览
李雅珍,王喜龙,田跃等.多光子成像用上转换纳米粒子的单颗粒研究与应用进展[J].发光学报,2023,44(11):2041-2056.
LI Yazhen,WANG Xilong,TIAN Yue,et al.Current Research and Application Development of Single Upconverting Nanoparticles as Multiphoton Probes[J].Chinese Journal of Luminescence,2023,44(11):2041-2056.
李雅珍,王喜龙,田跃等.多光子成像用上转换纳米粒子的单颗粒研究与应用进展[J].发光学报,2023,44(11):2041-2056. DOI: 10.37188/CJL.20230126.
LI Yazhen,WANG Xilong,TIAN Yue,et al.Current Research and Application Development of Single Upconverting Nanoparticles as Multiphoton Probes[J].Chinese Journal of Luminescence,2023,44(11):2041-2056. DOI: 10.37188/CJL.20230126.
多光子成像具有零背景下可见光信号输出的优势,但传统多光子探针激发域值高、光稳定性差的问题使其在生物应用中受到限制。基于稀土上转换的无机纳米粒子可在相对较低的激发光功率密度下实现稳定的上转换发光,因而成为一种重要的多光子探针。随着成像技术的进步,对上转换纳米粒子的研究正在从聚集体形式向单颗粒水平发展。单颗粒研究上转换发光不仅有利于排除环境因素的干扰,并且呈现出一系列与聚集体研究不尽一致的理论成果。由于单颗粒研究平台更加接近于探针生物成像的工作环境,因此在这一水平下对上转换纳米粒子进行材料优化与物理机制分析更贴近实际应用。本文从多光子发光机制与材料出发,重点围绕着单颗粒水平下上转换纳米粒子近年来的研究成果与应用进展进行了综述,最后对其未来的研究方向进行了展望。
Multiphoton imaging is an advanced imaging technique for its visible signal output with zero background. However, the required high pump threshold and poor photostability of traditional multiphoton probes hinder their biological applications. Rare earth doped upconverting nanoparticles become an important type of multiphoton probe because of the featured lower excitation density and better stability. Due to the development of imaging techniques, the study of ensemble upconverting nanoparticles is transiting toward singles. The study of single upconverting nanoparticles not only eliminates the interference of environmental factors, but also provides a bench of different theoretical conclusions against ensemble studies. Single particle imaging platform is more comparable with the practical biological imaging platform, thus designing more efficient upconverting nanoparticles and understanding physical mechanism at single particle level are readily for practical applications. Here, based on the multiphoton luminescent mechanism and materials, recent research achievements and application progress of single upconverting nanoparticles are reviewed. Finally, the future development and applications of single upconverting nanoparticles are prospected.
多光子探针上转换纳米粒子单颗粒成像生物应用
multiphoton probeupconverting nanoparticlessingle-particle imagingbiological application
BURKE B P, CAWTHORNE C, ARCHIBALD S J. Multimodal nanoparticle imaging agents: design and applications [J]. Philos. Trans. A Math. Phys. Eng. Sci., 2017, 375(2107): 20170261-1-16. doi: 10.1098/rsta.2017.0261http://dx.doi.org/10.1098/rsta.2017.0261
LIANG G F, WANG H J, SHI H, et al. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment [J]. J. Nanobiotechnol., 2020, 18(1): 154-1-22. doi: 10.1186/s12951-020-00713-3http://dx.doi.org/10.1186/s12951-020-00713-3
METTENBRINK E M, YANG W, WILHELM S. Bioimaging with upconversion nanoparticles [J]. Adv. Photonics Res., 2022, 3(12): 2200098-1-25. doi: 10.1002/adpr.202200098http://dx.doi.org/10.1002/adpr.202200098
DENK W, STRICKLER J H, WEBB W W. Two-photon laser scanning fluorescence microscopy [J]. Science, 1990, 248(4951): 73-76. doi: 10.1126/science.2321027http://dx.doi.org/10.1126/science.2321027
ZHOU J J, XU S Q, ZHANG J J, et al. Upconversion luminescence behavior of single nanoparticles [J]. Nanoscale, 2015, 7(37): 15026-15036. doi: 10.1039/c5nr02979ahttp://dx.doi.org/10.1039/c5nr02979a
CHEN C H, WANG F, WEN S H, et al. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles [J]. Nat. Commun., 2018, 9(1): 3290-1-6. doi: 10.1038/s41467-018-05842-whttp://dx.doi.org/10.1038/s41467-018-05842-w
HOANG V T, BOUSSAFA Y, SADER L, et al. Optimizing supercontinuum spectro-temporal properties by leveraging machine learning towards multi-photon microscopy [J]. Front. Photonics, 2022, 3: 940902-1-19. doi: 10.3389/fphot.2022.940902http://dx.doi.org/10.3389/fphot.2022.940902
NING Y J, WEI L, LIN S, et al. Dissection the endocytic routes of viral capsid proteins-coated upconversion nanoparticles by single-particle tracking [J]. Chin. Chem. Lett., 2022, 33(10): 4710-4714. doi: 10.1016/j.cclet.2021.12.084http://dx.doi.org/10.1016/j.cclet.2021.12.084
罗阳, 廖正芳, 张伟, 等. 近红外到近红外Mn2+掺杂NaYF4∶Yb3+/Tm3+纳米粒子的制备及其生物成像 [J]. 发光学报, 2018, 39(10): 1371-1377. doi: 10.3788/fgxb20183910.1371http://dx.doi.org/10.3788/fgxb20183910.1371
LUO Y, LIAO Z F, ZHANG W, et al. Synthesis of NIR-to-NIR Mn2+ doped-NaYF4∶Yb3+/Tm3+ nanoparticles and their applications in bioimaging [J]. Chin. J. Lumin., 2018, 39(10): 1371-1377. (in Chinese). doi: 10.3788/fgxb20183910.1371http://dx.doi.org/10.3788/fgxb20183910.1371
DENG H L, HUANG S, XU C. Intensely red-emitting luminescent upconversion nanoparticles for deep-tissue multimodal bioimaging [J]. Talanta, 2018, 184: 461-467. doi: 10.1016/j.talanta.2018.03.018http://dx.doi.org/10.1016/j.talanta.2018.03.018
YAN C L, ZHAO H G, PEREPICHKA D F, et al. Lanthanide ion doped upconverting nanoparticles: synthesis, structure and properties [J]. Small, 2016, 12(29): 3888-3907. doi: 10.1002/smll.201601565http://dx.doi.org/10.1002/smll.201601565
TIAN B N, FERNANDEZ-BRAVO A, NAJAFIAGHDAM H, et al. Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals [J]. Nat. Commun., 2018, 9(1): 3082-1-8. doi: 10.1038/s41467-018-05577-8http://dx.doi.org/10.1038/s41467-018-05577-8
WU S W, HAN G, MILLIRON D J, et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals [J]. Proc. Natl. Acad. Sci. USA, 2009, 106(27): 10917-10921. doi: 10.1073/pnas.0904792106http://dx.doi.org/10.1073/pnas.0904792106
PARK Y I, KIM J H, LEE K T, et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and t1 magnetic resonance imaging contrast agent [J]. Adv. Mater., 2009, 21(44): 4467-4471. doi: 10.1002/adma.200901356http://dx.doi.org/10.1002/adma.200901356
WANG F, DENG R R, WANG J, et al. Tuning upconversion through energy migration in core⁃shell nanoparticles [J]. Nat Mater, 2011, 10(12): 968-973. doi: 10.1038/nmat3149http://dx.doi.org/10.1038/nmat3149
贺飞, 盖世丽, 杨飘萍, 等. 稀土上转换荧光材料的发光性质调变及其应用 [J]. 发光学报, 2018, 39(1): 73-87. doi: 10.3788/fgxb20183901.0092http://dx.doi.org/10.3788/fgxb20183901.0092
HE F, GAI S L, YANG P P, et al. Luminescence modification and application of the lanthanide upconversion fluorescence materials [J]. Chin. J. Lumin., 2018, 39(1): 73-87. (in Chinese). doi: 10.3788/fgxb20183901.0092http://dx.doi.org/10.3788/fgxb20183901.0092
LIU Y J, LU Y Q, YANG X S, et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy [J]. Nature, 2017, 543(7644): 229-233. doi: 10.1038/nature21366http://dx.doi.org/10.1038/nature21366
REDDY K L, BALAJI R, KUMAR A, et al. Lanthanide doped near infrared active upconversion nanophosphors: Fundamental concepts, synthesis strategies, and technological applications [J]. Small, 2018, 14(37): 1801304. doi: 10.1002/smll.201801304http://dx.doi.org/10.1002/smll.201801304
YAO J, HUANG C, LIU C H, et al. Upconversion luminescence nanomaterials: a versatile platform for imaging, sensing, and therapy [J]. Talanta, 2020, 208: 120157-1-23. doi: 10.1016/j.talanta.2019.120157http://dx.doi.org/10.1016/j.talanta.2019.120157
DALTON L R, HARPER A W, GHOSN R, et al. Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics [J]. Chem. Mater., 1995, 7(6): 1060-1081. doi: 10.1021/cm00054a006http://dx.doi.org/10.1021/cm00054a006
SUYVER J F, AEBISCHER A, BINER D, et al. Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion [J]. Opt. Mater., 2005, 27(6): 1111-1130. doi: 10.1016/j.optmat.2004.10.021http://dx.doi.org/10.1016/j.optmat.2004.10.021
CHAN E M. Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications [J]. Chem. Soc. Rev., 2015, 44(6): 1653-1679. doi: 10.1039/c4cs00205ahttp://dx.doi.org/10.1039/c4cs00205a
GUO L, WONG M S. Multiphoton excited fluorescent materials for frequency upconversion emission and fluorescent probes [J]. Adv. Mater., 2014, 26(31): 5400-5428. doi: 10.1002/adma.201400084http://dx.doi.org/10.1002/adma.201400084
LIU X Y, YU B, SHEN Y Q, et al. Design of NIR-II high performance organic small molecule fluorescent probes and summary of their biomedical applications [J]. Coord. Chem. Rev., 2022, 468: 214609. doi: 10.1016/j.ccr.2022.214609http://dx.doi.org/10.1016/j.ccr.2022.214609
ALGAR W R, MASSEY M, REES K, et al. Photoluminescent nanoparticles for chemical and biological analysis and imaging [J]. Chem. Rev., 2021, 121(15): 9243-9358. doi: 10.1021/acs.chemrev.0c01176http://dx.doi.org/10.1021/acs.chemrev.0c01176
WU L L, LIU J H, LI P, et al. Two-photon small-molecule fluorescence-based agents for sensing, imaging, and therapy within biological systems [J]. Chem. Soc. Rev., 2021, 50(2): 702-734. doi: 10.1039/d0cs00861chttp://dx.doi.org/10.1039/d0cs00861c
ZHU S J, TIAN R, ANTARIS A L, et al. Near-infrared-II molecular dyes for cancer imaging and surgery [J]. Adv. Mater., 2019, 31(24): 1900321-1-25. doi: 10.1002/adma.201900321http://dx.doi.org/10.1002/adma.201900321
LEI Z H, ZHANG F. Molecular engineering of NIR-II fluorophores for improved biomedical detection [J]. Angew. Chem. Int. Ed., 2021, 60(30): 16294-16308. doi: 10.1002/anie.202007040http://dx.doi.org/10.1002/anie.202007040
GAO Y, LIU H, LI J Z, et al. Photophysical properties of water-soluble CdTe/CdSe/ZnS core/shell/shell nanocrystals emitting at 820 nm [J]. J. Phys. Chem. C, 2020, 124(14): 7994-7999. doi: 10.1021/acs.jpcc.0c01027http://dx.doi.org/10.1021/acs.jpcc.0c01027
LARSON D R, ZIPFEL W R, WILLIAMS R M, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo [J]. Science, 2003, 300(5624): 1434-1436. doi: 10.1126/science.1083780http://dx.doi.org/10.1126/science.1083780
HONG H, WU C C, ZHAO Z X, et al. Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots [J]. Nat. Photonics, 2021, 15(7): 510-515. doi: 10.1038/s41566-021-00801-2http://dx.doi.org/10.1038/s41566-021-00801-2
CHENG L, CHENG Y, XU J, et al. Near-infrared two-photon absorption upconversion of PbS/CdS quantum dots prepared by cation exchange method [J]. Mater. Res. Bull., 2021, 140: 111298-1-5. doi: 10.1016/j.materresbull.2021.111298http://dx.doi.org/10.1016/j.materresbull.2021.111298
ZHANG Y Y, JIANG D Y, YANG W, et al. Near-infrared-emitting colloidal Ag2S quantum dots exhibiting upconversion luminescence [J]. Superlattices Microstruct., 2017, 102: 512-516. doi: 10.1016/j.spmi.2016.11.060http://dx.doi.org/10.1016/j.spmi.2016.11.060
LIU H J, DENG X Q, TONG S, et al. In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots [J]. Nano Lett., 2019, 19(8): 5260-5265. doi: 10.1021/acs.nanolett.9b01708http://dx.doi.org/10.1021/acs.nanolett.9b01708
SANTOS C I M, RODRÍGUEZ-PÉREZ L, GONÇALVES G, et al. Novel hybrids based on graphene quantum dots covalently linked to glycol corroles for multiphoton bioimaging [J]. Carbon, 2020, 166: 164-174. doi: 10.1016/j.carbon.2020.04.012http://dx.doi.org/10.1016/j.carbon.2020.04.012
XING Y, RAO J H. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging [J]. Cancer Biomark., 2008, 4(6): 307-319. doi: 10.3233/cbm-2008-4603http://dx.doi.org/10.3233/cbm-2008-4603
ALGAR W R, SUSUMU K, DELEHANTY J B, et al. Semiconductor quantum dots in bioanalysis: crossing the valley of death [J]. Anal. Chem., 2011, 83(23): 8826-8837. doi: 10.1021/ac201331rhttp://dx.doi.org/10.1021/ac201331r
ROSENTHAL S J, CHANG J C, KOVTUN O, et al. Biocompatible quantum dots for biological applications [J]. Chem. Biol., 2011, 18(1): 10-24. doi: 10.1016/j.chembiol.2010.11.013http://dx.doi.org/10.1016/j.chembiol.2010.11.013
KLIMOV V I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals [J]. Annu. Rev. Phys. Chem., 2007, 58: 635-673. doi: 10.1146/annurev.physchem.58.032806.104537http://dx.doi.org/10.1146/annurev.physchem.58.032806.104537
张松涛, 王樱蕙, 张洪杰. 稀土发光材料在近红外二区成像中的应用 [J]. 发光学报, 2020, 41(12): 1460-1478. doi: 10.37188/CJL.20200340http://dx.doi.org/10.37188/CJL.20200340
ZHANG S T, WANG Y H, ZHANG H J. Lanthanide-doped fluorescence probes for NIR-Ⅱ fluorescence imaging [J]. Chin. J. Lumin., 2020, 41(12): 1460-1478. (in Chinese). doi: 10.37188/CJL.20200340http://dx.doi.org/10.37188/CJL.20200340
LI Y, CHEN C, LIU F F, et al. Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application [J]. Microchim. Acta, 2022, 189(3): 109-1-28. doi: 10.1007/s00604-022-05180-1http://dx.doi.org/10.1007/s00604-022-05180-1
WANG F, LIU X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chem. Soc. Rev., 2009, 38(4): 976-989. doi: 10.1039/b809132nhttp://dx.doi.org/10.1039/b809132n
DACOSTA M V, DOUGHAN S, HAN Y, et al. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review [J]. Anal. Chim. Acta, 2014, 832: 1-33. doi: 10.1016/j.aca.2014.04.030http://dx.doi.org/10.1016/j.aca.2014.04.030
LIU G K. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors [J]. Chem. Soc. Rev., 2015, 44(6): 1635-1652. doi: 10.1039/c4cs00187ghttp://dx.doi.org/10.1039/c4cs00187g
ZHOU J, LIU Q, FENG W, et al. Upconversion luminescent materials: advances and applications [J]. Chem. Rev., 2015, 115(1): 395-465. doi: 10.1021/cr400478fhttp://dx.doi.org/10.1021/cr400478f
VAN DIJK J M F, SCHUURMANS M F H. On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f-4f transitions in rare-earth ions [J]. J. Chem. Phys., 1983, 78(9): 5317-5323. doi: 10.1063/1.445485http://dx.doi.org/10.1063/1.445485
HAASE M, SCHÄFER H. Upconverting nanoparticles [J]. Angew. Chem. Int. Ed., 2011, 50(26): 5808-5829. doi: 10.1002/anie.201005159http://dx.doi.org/10.1002/anie.201005159
MAHALINGAM V, VETRONE F, NACCACHE R, et al. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation [J]. Adv. Mater., 2009, 21(40): 4025-4028. doi: 10.1002/adma.200901174http://dx.doi.org/10.1002/adma.200901174
WANG J, WANG F, XU J, et al. Lanthanide-doped LiYF4 nanoparticles: synthesis and multicolor upconversion tuning [J]. C. R. Chim., 2010, 13(6): 731-736. doi: 10.1016/j.crci.2010.03.021http://dx.doi.org/10.1016/j.crci.2010.03.021
DE G J H, QIN W P, ZHANG J S, et al. Bright-green upconversion emission of hexagonal LaF3∶Yb3+, Er3+ nanocrystals [J]. Chem Lett., 2005, 34(7): 914-915. doi: 10.1246/cl.2005.914http://dx.doi.org/10.1246/cl.2005.914
SINGH A K, KUMAR K, PANDEY A C, et al. Multi-phonon assisted upconversion emission and power dependence studies in LaF3∶Er3+ phosphor [J]. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2013, 106: 236-241. doi: 10.1016/j.saa.2013.01.018http://dx.doi.org/10.1016/j.saa.2013.01.018
李波, 黄立辉, 陈新禹, 等. Tm3+/Yb3+共掺含LaF3纳米晶锗酸盐微晶玻璃的上转换发光及其温度传感特性 [J]. 发光学报, 2023, 44(2): 271-278.
LI B, HUANG L H, CHEN X Y, et al. Upconversion luminescence and temperature sensing characteristics of Tm3+/Yb3+ co-doped germanate glass ceramics containing LaF3 nanocrystals [J]. Chin. J. Lumin., 2023, 44(2): 271-278. (in Chinese)
XIN H B, LI Y C, XU D K, et al. Single upconversion nanoparticle-bacterium cotrapping for single-bacterium labeling and analysis [J]. Small, 2017, 13(14): 1603418-1-10. doi: 10.1002/smll.201603418http://dx.doi.org/10.1002/smll.201603418
WANG F, HAN Y, LIM C S, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping [J]. Nature, 2010, 463(7284): 1061-1065. doi: 10.1038/nature08777http://dx.doi.org/10.1038/nature08777
KRÄMER K W, BINER D, FREI G, et al. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors [J]. Chem. Mater., 2004, 16(7): 1244-1251. doi: 10.1021/cm031124ohttp://dx.doi.org/10.1021/cm031124o
CHEN G Y, QIU H L, PRASAD P N, et al. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics [J]. Chem. Rev., 2014, 114(10): 5161-5214. doi: 10.1021/cr400425hhttp://dx.doi.org/10.1021/cr400425h
JI Y N, XU W, WANG Y, et al. Supersensitive sensing based on upconversion nanoparticles through cascade photon amplification at single-particle level [J]. Sens. Actuators B Chem., 2022, 367: 132125-1-9. doi: 10.1016/j.snb.2022.132125http://dx.doi.org/10.1016/j.snb.2022.132125
FRENZEL F. Characterisation of Photo-physical Properties of Upconversion Nanocrystals at Ensemble and Single Particle Level [D]. Berlin: Humboldt-Universität zu Berlin, 2022.
DONG H, SUN L D, YAN C H. Upconversion emission studies of single particles [J]. Nano Today, 2020, 35: 100956-1-23. doi: 10.1016/j.nantod.2020.100956http://dx.doi.org/10.1016/j.nantod.2020.100956
ZHOU J J, CHIZHIK A I, CHU S, et al. Single-particle spectroscopy for functional nanomaterials [J]. Nature, 2020, 579(7797): 41-50. doi: 10.1038/s41586-020-2048-8http://dx.doi.org/10.1038/s41586-020-2048-8
CAO T Y, YANG Y, SUN Y, et al. Biodistribution of sub-10 nm PEG-modified radioactive/upconversion nanoparticles [J]. Biomaterials, 2013, 34(29): 7127-7134. doi: 10.1016/j.biomaterials.2013.05.028http://dx.doi.org/10.1016/j.biomaterials.2013.05.028
LIU C Y, GAO Z Y, ZENG J F, et al. Magnetic/upconversion fluorescent NaGdF4∶Yb, Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo [J]. ACS Nano, 2013, 7(8): 7227-7240. doi: 10.1021/nn4030898http://dx.doi.org/10.1021/nn4030898
ZHAO J B, JIN D Y, SCHARTNER E P, et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence [J]. Nat. Nanotechnol., 2013, 8(10): 729-734. doi: 10.1038/nnano.2013.171http://dx.doi.org/10.1038/nnano.2013.171
GARGAS D J, CHAN E M, OSTROWSKI A D, et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging [J]. Nat. Nanotechnol., 2014, 9(4): 300-305. doi: 10.1038/nnano.2014.29http://dx.doi.org/10.1038/nnano.2014.29
SCHIETINGER S, MENEZES L D S, LAURITZEN B, et al. Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals [J]. Nano Lett., 2009, 9(6): 2477-2481. doi: 10.1021/nl901253thttp://dx.doi.org/10.1021/nl901253t
SCHIETINGER S, AICHELE T, WANG H Q, et al. Plasmon-enhanced upconversion in single NaYF4∶Yb3+/Er3+ codoped nanocrystals [J]. Nano Lett., 2010, 10(1): 134-138. doi: 10.1021/nl903046rhttp://dx.doi.org/10.1021/nl903046r
LIU Q, ZHANG Y X, PENG C S, et al. Single upconversion nanoparticle imaging at sub-10 W·cm-2 irradiance [J]. Nat. Photonics, 2018, 12(9): 548-553. doi: 10.1038/s41566-018-0217-1http://dx.doi.org/10.1038/s41566-018-0217-1
FRENZEL F, WÜRTH C, DUKHNO O, et al. Multiband emission from single β-NaYF4(Yb, Er) nanoparticles at high excitation power densities and comparison to ensemble studies [J]. Nano Res., 2021, 14(11): 4107-4115. doi: 10.1007/s12274-021-3350-yhttp://dx.doi.org/10.1007/s12274-021-3350-y
OSTROWSKI A D, CHAN E M, GARGAS D J, et al. Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals [J]. ACS Nano, 2012, 6(3): 2686-2692. doi: 10.1021/nn3000737http://dx.doi.org/10.1021/nn3000737
PARK Y I, NAM S H, KIM J H, et al. Comparative study of upconverting nanoparticles with various crystal structures, core/shell structures, and surface characteristics [J]. J. Phys. Chem. C, 2013, 117(5): 2239-2244. doi: 10.1021/jp3105248http://dx.doi.org/10.1021/jp3105248
LI L, GREEN K, HALLEN H, et al. Enhancement of single particle rare earth doped NaYF4∶Yb, Er emission with a gold shell [J]. Nanotechnology, 2015, 26(2): 025101-1-9. doi: 10.1088/0957-4484/26/2/025101http://dx.doi.org/10.1088/0957-4484/26/2/025101
GREYBUSH N J, SABOKTAKIN M, YE X C, et al. Plasmon-enhanced upconversion luminescence in single nanophosphor⁃nanorod heterodimers formed through template-assisted self-assembly [J]. ACS Nano, 2014, 8(9): 9482-9491. doi: 10.1021/nn503675ahttp://dx.doi.org/10.1021/nn503675a
KILBANE J D, CHAN E M, MONACHON C, et al. Far-field optical nanothermometry using individual sub-50 nm upconverting nanoparticles [J]. Nanoscale, 2016, 8(22): 11611-11616. doi: 10.1039/c6nr01479hhttp://dx.doi.org/10.1039/c6nr01479h
PICKEL A D, TEITELBOIM A, CHAN E M, et al. Apparent self-heating of individual upconverting nanoparticle thermometers [J]. Nat. Commun., 2018, 9(1): 4907-1-12. doi: 10.1038/s41467-018-07361-0http://dx.doi.org/10.1038/s41467-018-07361-0
LI X, WEI L, PAN L L, et al. Homogeneous immunosorbent assay based on single-particle enumeration using upconversion nanoparticles for the sensitive detection of cancer biomarkers [J]. Anal. Chem., 2018, 90(7): 4807-4814. doi: 10.1021/acs.analchem.8b00251http://dx.doi.org/10.1021/acs.analchem.8b00251
WANG X D, ZHANG X R, HUANG D X, et al. High-sensitivity sensing of divalent copper ions at the single upconversion nanoparticle level [J]. Anal. Chem., 2021, 93(34): 11686-11691. doi: 10.1021/acs.analchem.1c01311http://dx.doi.org/10.1021/acs.analchem.1c01311
XU Z H, WANG C N, MA R, et al. Aptamer-based biosensing through the mapping of encoding upconversion nanoparticles for sensitive CEA detection [J]. Analyst, 2022, 147(14): 3350-3359. doi: 10.1039/d2an00669chttp://dx.doi.org/10.1039/d2an00669c
CLARKE C, LIU D M, WANG F, et al. Large-scale dewetting assembly of gold nanoparticles for plasmonic enhanced upconversion nanoparticles [J]. Nanoscale, 2018, 10(14): 6270-6276. doi: 10.1039/c7nr08979ahttp://dx.doi.org/10.1039/c7nr08979a
张翔宇, 马英翔, 徐春龙, 等. 单颗粒稀土微/纳晶体上转换荧光行为的光谱学探究 [J]. 物理学报, 2018, 67(18): 183301-1-9. doi: 10.7498/aps.67.20172191http://dx.doi.org/10.7498/aps.67.20172191
ZHANG X Y, MA Y X, XU C L, et al. Spectroscopic exploration of upconversion luminescence behavior of rare earth-doped single-particle micro/nanocrystals [J]. Acta Phys. Sinica, 2018, 67(18): 183301-1-9. (in Chinese). doi: 10.7498/aps.67.20172191http://dx.doi.org/10.7498/aps.67.20172191
CHEN P, SONG M, WU E, et al. Polarization modulated upconversion luminescence: single particle vs. few-particle aggregates [J]. Nanoscale, 2015, 7(15): 6462-6466. doi: 10.1039/c5nr00289chttp://dx.doi.org/10.1039/c5nr00289c
YANG D D, PENG Z X, ZHAN Q Q, et al. Anisotropic excitation polarization response from a single white light-emitting β-NaYF4∶Yb3+, Pr3+ microcrystal [J]. Small, 2019, 15(43): 1904298-1-9. doi: 10.1002/smll.201904298http://dx.doi.org/10.1002/smll.201904298
LU Y Q, ZHAO J B, ZHANG R, et al. Tunable lifetime multiplexing using luminescent nanocrystals [J]. Nat. Photonics, 2014, 8(1): 32-36. doi: 10.1038/nphoton.2013.322http://dx.doi.org/10.1038/nphoton.2013.322
KIM J, PARK H S, AHN Y, et al. Universal emission characteristics of upconverting nanoparticles revealed by single-particle spectroscopy [J]. ACS Nano, 2023, 17(1): 648-656. doi: 10.1021/acsnano.2c09896http://dx.doi.org/10.1021/acsnano.2c09896
ZHOU J J, CHEN G X, WU E, et al. Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod [J]. Nano Lett., 2013, 13(5): 2241-2246. doi: 10.1021/nl400807mhttp://dx.doi.org/10.1021/nl400807m
WANG F, WEN S H, HE H, et al. Microscopic inspection and tracking of single upconversion nanoparticles in living cells [J]. Light Sci. Appl., 2018, 7(4): 18007-1-6. doi: 10.1038/lsa.2018.7http://dx.doi.org/10.1038/lsa.2018.7
SIEFE C, MEHLENBACHER R D, PENG C S, et al. Sub-20 nm core-shell-shell nanoparticles for bright upconversion and enhanced förster resonant energy transfer [J]. J. Am. Chem. Soc., 2019, 141(42): 16997-17005. doi: 10.1021/jacs.9b09571http://dx.doi.org/10.1021/jacs.9b09571
HU J L, GUAN D M, ZHAO B J, et al. Ytterbium-enriched outmost shell for enhanced upconversion single molecule imaging and interfacial triplet energy transfer [J]. Adv. Opt. Mater., 2022, 10(6): 2101763-1-8. doi: 10.1002/adom.202101763http://dx.doi.org/10.1002/adom.202101763
ZHANG Y X, WEN R R, HU J L, et al. Enhancement of single upconversion nanoparticle imaging by topologically segregated core-shell structure with inward energy migration [J]. Nat. Commun., 2022, 13(1): 5927-1-12. doi: 10.1038/s41467-022-33660-8http://dx.doi.org/10.1038/s41467-022-33660-8
LIU Y C, ZHU W R, WEI X R, et al. Cyanine dye-assembled composite upconversion nanoparticles for the sensing and cell imaging of nitrite based on a single particle imaging method [J]. Analyst, 2022, 147(12): 2793-2801. doi: 10.1039/d2an00594hhttp://dx.doi.org/10.1039/d2an00594h
XUE Y X, DING C J, RONG Y Y, et al. Tuning plasmonic enhancement of single nanocrystal upconversion luminescence by varying gold nanorod diameter [J]. Small, 2017, 13(36): 1701155-1-11. doi: 10.1002/smll.201701155http://dx.doi.org/10.1002/smll.201701155
GAO D L, WANG D, ZHANG X Y, et al. Spatial control of upconversion emission in a single fluoride microcrystal via the excitation mode and native interference effect [J]. J. Mater. Chem. C, 2018, 6(3): 622-629. doi: 10.1039/c7tc05032ahttp://dx.doi.org/10.1039/c7tc05032a
PANOV N, LU D S, ORTIZ-RIVERO E, et al. Hyperspectral imaging and optical trapping: complementary tools for assessing direction-dependent polarized emission from single upconverting LiYF4∶Yb3+/Er3+ microparticles [J]. Adv. Opt. Mater., 2021, 9(12): 2100101-1-9. doi: 10.1002/adom.202100101http://dx.doi.org/10.1002/adom.202100101
DE OLIVEIRA LIMA K, DOS SANTOS L F, GALVÃO R, et al. Single Er3+, Yb3+∶KGd3F10 nanoparticles for nanothermometry [J]. Front. Chem., 2021, 9: 712659-1-13. doi: 10.3389/fchem.2021.712659http://dx.doi.org/10.3389/fchem.2021.712659
SWEARER D F, FISCHER S, ANGELL D K, et al. Single particle cathodoluminescence spectroscopy with sub-20 nm, electron-stable phosphors [J]. ACS Photonics, 2021, 8(6): 1539-1547. doi: 10.1021/acsphotonics.1c00235http://dx.doi.org/10.1021/acsphotonics.1c00235
GAO W, HAN S S, WANG B Y, et al. Single-layer gold nanoparticle film enhances the upconversion luminescence of a single NaYbF4∶2%Er3+ microdisk [J]. J. Alloys Compd., 2022, 900: 163493-1-12. doi: 10.1016/j.jallcom.2021.163493http://dx.doi.org/10.1016/j.jallcom.2021.163493
RODRÍGUEZ-SEVILLA P, RODRÍGUEZ-RODRÍGUEZ H, PEDRONI M, et al. Assessing single upconverting nanoparticle luminescence by optical tweezers [J]. Nano Lett., 2015, 15(8): 5068-5074. doi: 10.1021/acs.nanolett.5b01184http://dx.doi.org/10.1021/acs.nanolett.5b01184
XU W, CHEN X, SONG H W. Upconversion manipulation by local electromagnetic field [J]. Nano Today, 2017, 17: 54-78. doi: 10.1016/j.nantod.2017.10.011http://dx.doi.org/10.1016/j.nantod.2017.10.011
ZHENG W, HUANG P, TU D T, et al. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection [J]. Chem. Soc. Rev., 2015, 44(6): 1379-1415. doi: 10.1039/c4cs00178hhttp://dx.doi.org/10.1039/c4cs00178h
0
浏览量
337
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构