浏览全部资源
扫码关注微信
1.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2.中国科学院大学, 北京 100049
3.长春奥普光电技术股份有限公司, 吉林 长春 130033
[ "孟媛(1996-),女,吉林省吉林市人,硕士研究生,2019年于吉林师范大学获得学士学位,主要从事胶体量子点发光和激光性能的研究。mengyuan20@mails.ucas.ac.cn " ]
[ "郭晓阳(1982-),女,吉林长春人,博士,副研究员,博士生导师,2010年于中国科学院长春应用化学研究所获得博士学位,主要从事新型光电子材料与器件的研究。guoxy@ciomp.ac.cn" ]
[ "刘星元(1970-),男,黑龙江伊春人,博士,研究员,1999年于中国科学院长春物理研究所获得博士学位,主要从事微腔光电子技术方面的研究。liuxy@ciomp.ac.cn " ]
纸质出版日期:2023-09-05,
收稿日期:2023-05-08,
修回日期:2023-05-18,
扫 描 看 全 文
孟媛,张艳,郭晓阳等.一维光子晶体带边态模式调控的胶体量子点发光性能[J].发光学报,2023,44(09):1546-1551.
MENG Yuan,ZHANG Yan,GUO Xiaoyang,et al.Luminescence Performance of Colloidal Quantum Dots Regulated by Band Edge Mode in One-dimensional Photonic Crystals[J].Chinese Journal of Luminescence,2023,44(09):1546-1551.
孟媛,张艳,郭晓阳等.一维光子晶体带边态模式调控的胶体量子点发光性能[J].发光学报,2023,44(09):1546-1551. DOI: 10.37188/CJL.20230124.
MENG Yuan,ZHANG Yan,GUO Xiaoyang,et al.Luminescence Performance of Colloidal Quantum Dots Regulated by Band Edge Mode in One-dimensional Photonic Crystals[J].Chinese Journal of Luminescence,2023,44(09):1546-1551. DOI: 10.37188/CJL.20230124.
一维光子晶体(1DPC)是人工构造的周期性光学介电结构,1DPC可以对发光物质进行调控的主要手段包括缺陷态模式调控以及带边态模式调控。1DPC带边态模式中存在较大的光子态密度,因此可以有效地调节材料的发光性能。本文研究了1DPC的带边态模式对在其表面涂附的胶体量子点(CQD)薄膜发光性能的影响。通过使用不同的CQD材料、不同的表面薄膜厚度、不同观测角度等手段对样品的发光特性进行了研究。结果表明,1DPC带边态模式可以有效调控位于表面层的CQD的发光特性,有效地增强CQD薄膜的荧光发射强度、窄化发射线宽。经1DPC带边态模式调控的CQD材料具有更快的荧光辐射跃迁速率。利用1DPC对CQD材料发光性能的影响有助于优化设计的器件结构,从而大幅提升发光器件的性能。
One-dimensional photonic crystals (1DPCs) are artificially constructed periodic optical dielectric structures. 1DPCs can modulate the luminescent material mainly by defect mode modulation and band-edge mode modulation. 1DPC band-edge mode with a large density of photonic states can effectively modulate the luminescent properties of the luminescent material. In this paper, the fluorescence emission of colloidal quantum dot (CQD) materials coated on the surface of 1DPC is studied. By using different QD materials, different surface film thicknesses, and different angles for fluorescence detection, luminescence characteristics of the samples have been investigated. The results show that 1DPC band edge mode can effectively regulate the luminescence characteristics of CQD films located in the surface layer, effectively enhance the fluorescence emission intensity and narrow the emission linewidth. CQD materials controlled by 1DPC band edge mode have faster fluorescence radiation transition rate. The influence of 1DPC on the luminescent properties of CQD materials is helpful to optimize the design of the device structure, so as to greatly improve the performance of the luminescent devices.
带边态模式胶体量子点光致发光角分布一维光子晶体
band edge modecolloidal quantum dotsphotoluminescenceangular distributionone-dimensional photonic crystal
YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys. Rev. Lett., 1987, 58(20): 2059-2062. doi: 10.1103/physrevlett.58.2059http://dx.doi.org/10.1103/physrevlett.58.2059
JOHN S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett., 1987, 58(23): 2486-2489. doi: 10.1103/physrevlett.58.2486http://dx.doi.org/10.1103/physrevlett.58.2486
HIROTANI K, SHIRATORI R, BABA T. Si photonic crystal slow-light waveguides optimized through informatics technology [J]. Opt. Lett., 2021, 46(17): 4422-4425. doi: 10.1364/ol.436118http://dx.doi.org/10.1364/ol.436118
WANG F, SONG X Y, CHIO U F, et al. Angular-adjustable single-channel narrow-band filter based on one-dimensional photonic crystal heterostructure [J]. AIP Adv., 2021, 11(9): 095013. doi: 10.1063/5.0061986http://dx.doi.org/10.1063/5.0061986
LU T W, WU C C, LEE P T. 1D photonic crystal strain sensors [J]. ACS Photonics, 2018, 5(7): 2767-2772. doi: 10.1021/acsphotonics.8b00560http://dx.doi.org/10.1021/acsphotonics.8b00560
LI R Z, LI L, WANG B, et al. Preparation of quantum dot-embedded photonic crystal hydrogel and its application as fluorescence sensor for the detection of nitrite [J]. Nanomaterials, 2021, 11(11): 3126. doi: 10.3390/nano11113126http://dx.doi.org/10.3390/nano11113126
LI T, LIU G J, KONG H, et al. Recent advances in photonic crystal-based sensors [J]. Coord. Chem. Rev., 2023, 475: 214909. doi: 10.1016/j.ccr.2022.214909http://dx.doi.org/10.1016/j.ccr.2022.214909
GOODARZI A, GHANAATSHOAR M. Controlling light by light: photonic crystal-based coherent all-optical transistor [J]. J. Opt. Soc. Am. B, 2016, 33(8): 1594-1599. doi: 10.1364/josab.33.001594http://dx.doi.org/10.1364/josab.33.001594
周建伟, 梁静秋, 梁中翥, 等. 液晶调制光子晶体微腔光衰减器 [J]. 发光学报, 2013, 34(2): 245-250. doi: 10.3788/fgxb20133402.0245http://dx.doi.org/10.3788/fgxb20133402.0245
ZHOU J W, LIANG J Q, LIANG Z Z, et al. Tunable two-dimensional photonic crystals cavity attenuator using liquid-crystal [J]. Chin. J. Lumin., 2013, 34(2): 245-250. (in Chinese). doi: 10.3788/fgxb20133402.0245http://dx.doi.org/10.3788/fgxb20133402.0245
刘震东, 杨正文, 李勃, 等. 光子带隙结构调制下发光体中的能量传递过程 [J]. 发光学报, 2009, 30(2): 157-161. doi: 10.1360/972009-495http://dx.doi.org/10.1360/972009-495
LIU Z D, YANG Z W, LI B, et al. The energy transfer process under the photonic band gap modulation in light emitting materials [J]. Chin. J. Lumin., 2009, 30(2): 157-161. (in Chinese). doi: 10.1360/972009-495http://dx.doi.org/10.1360/972009-495
ALY A H, ELSAYED H A. Defect mode properties in a one-dimensional photonic crystal [J]. Phys. B, 2012, 407(1): 120-125. doi: 10.1016/j.physb.2011.09.137http://dx.doi.org/10.1016/j.physb.2011.09.137
NOH J, BENALCAZAR W A, HUANG S, et al. Topological protection of photonic mid-gap defect modes [J]. Nat. Photon., 2018, 12(7): 408-415. doi: 10.1038/s41566-018-0179-3http://dx.doi.org/10.1038/s41566-018-0179-3
DOWLING J P, SCALORA M, BLOEMER M J, et al. The photonic band edge laser: a new approach to gain enhancement [J]. J. Appl. Phys., 1994, 75(4): 1896-1899. doi: 10.1063/1.356336http://dx.doi.org/10.1063/1.356336
PUZZO D P, SCOTOGNELLA F, ZAVELANI-ROSSI M, et al. Distributed feedback lasing from a composite poly(phenylene vinylene)-nanoparticle one-dimensional photonic crystal [J]. Nano Lett., 2009, 9(12): 4273-4278. doi: 10.1021/nl902516thttp://dx.doi.org/10.1021/nl902516t
WANG D Q, YANG A K, WANG W J, et al. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices [J]. Nat. Nanotechnol., 2017, 12(9): 889-894. doi: 10.1038/nnano.2017.126http://dx.doi.org/10.1038/nnano.2017.126
0
浏览量
113
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构