浏览全部资源
扫码关注微信
1.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2.中国科学院大学, 北京 100049
[ "闫靖宇(1996-),男,湖北襄阳人,硕士研究生,2019年于湖北文理学院获得学士学位,主要从事电致变色智能光学材料、器件及应用研究。E-mail:15571188323@163. com" ]
[ "吕营(1986-),女,吉林省吉林市人,博士,副研究员,2013年于吉林大学获得博士学位,主要从事电致变色智能光学材料、器件及应用研究。E-mail: lvying@ciomp.ac.cn" ]
[ "刘星元(1970-),男,黑龙江伊春人,博士,研究员,1999年于中国科学院长春物理研究所获得博士学位,主要从事微腔光电子器件物理研究。 E-mail: liuxy@ciomp.ac.cn" ]
纸质出版日期:2023-08-05,
收稿日期:2023-04-27,
修回日期:2023-05-05,
移动端阅览
闫靖宇,吕营,李晟泽等.基于Cr/Ag/WO3薄膜的柔性反射式电致变色器件[J].发光学报,2023,44(08):1487-1495.
YAN Jingyu,LYU Ying,LI Shengze,et al.Flexible Reflectance-type Electrochromic Devices Based on Cr/Ag/WO3 Thin Films[J].Chinese Journal of Luminescence,2023,44(08):1487-1495.
闫靖宇,吕营,李晟泽等.基于Cr/Ag/WO3薄膜的柔性反射式电致变色器件[J].发光学报,2023,44(08):1487-1495. DOI: 10.37188/CJL.20230113.
YAN Jingyu,LYU Ying,LI Shengze,et al.Flexible Reflectance-type Electrochromic Devices Based on Cr/Ag/WO3 Thin Films[J].Chinese Journal of Luminescence,2023,44(08):1487-1495. DOI: 10.37188/CJL.20230113.
柔性反射式电致变色器件在电子纸显示、伪装、智能变色表面等领域应用前景广阔,但仍存在柔性差、对比度低、稳定性不佳等问题。本工作采用电子束蒸发法在玻璃和柔性PET衬底上制备了Cr/Ag/WO
3
(CAW)结构无铟反射式电致变色薄膜。CAW薄膜具有高反射率和低面电阻,其可见光平均反射率高达89.1%,面电阻仅为1.2 Ω/□。在电致变色性能方面,CAW薄膜展示出快着色及褪色响应时间(分别为9.3 s和2.0 s)、高达83.0%(564 nm)的反射光学对比度、大范围的反射颜色调节(
>
40 nm)和良好的电化学循环稳定性(
>
4 500 次)。此外,CAW薄膜具有良好的衬底兼容性,我们制备了柔性CAW薄膜并组装了图案化柔性电致变色器件,柔性薄膜在弯折2 000次后性质基本无衰减,对比度达83.2%(574 nm),器件在不同电压作用下实现了丰富的反射颜色动态调控。这些结果将为高性能柔性反射式电致变色器件构建提供简单有效的指导,在新型显示技术领域有一定应用潜力。
Flexible reflective electrochromic devices have broad application prospects in e-paper displays, camouflage, and intelligent color-changing surfaces, but there are still problems such as poor flexibility, low optical contrast, and poor stability. Indium-free reflective electrochromic electrodes with Cr/Ag/WO
3
(CAW) structure have been prepared by electron beam evaporation on glass and flexible PET substrates. CAW films have high reflectance and low surface resistance. The average visible light reflectance is up to 89.2%, and the surface resistance is only 1.2 Ω/□. In terms of electrochromic properties, CAW films show fast colored and bleached response times of 9.3 s and 2.0 s, high optical contrast of up to 83.0% (564 nm), wide range of reflective color modulation (
>
40 nm), and excellent electrochemical cycling stability (
>
4 500 cycles). In addition, CAW films have good substrate compatibility. We prepared flexible CAW films and assembled patterned flexible electrochromic devices. The electrical properties of the flexible film remain almost unchanged after 2 000 consecutive bends and the optical contrast reaches 83.2% at 574 nm. The devices realize rich reflected color dynamic regulation under different voltages. These results will provide simple and effective guidance for the construction of high-performance flexible reflective electrochromic devices, and have certain application potential in the field of new display technology.
电致变色WO3无铟柔性反射
electrochromicWO3indium-freeflexibilityreflection
LI Z W, YIN Y D. Stimuli-responsive optical nanomaterials [J]. Adv. Mater., 2019, 31(15): 1807061-1-33. doi: 10.1002/adma.201807061http://dx.doi.org/10.1002/adma.201807061
LEE W, KIM D, LEE S, et al. Stimuli-responsive switchable organic-inorganic nanocomposite materials [J]. Nano Today, 2018, 23: 97-123. doi: 10.1016/j.nantod.2018.10.006http://dx.doi.org/10.1016/j.nantod.2018.10.006
WANG M S, YIN Y D. Magnetically responsive nanostructures with tunable optical properties [J]. J. Am. Chem. Soc., 2016, 138(20): 6315-6323. doi: 10.1021/jacs.6b02346http://dx.doi.org/10.1021/jacs.6b02346
WANG W T, ZHOU Y C, YANG L, et al. Stimulus-responsive photonic crystals for advanced security [J]. Adv. Funct. Mater., 2022, 32(40): 2204744-1-25. doi: 10.1002/adfm.202204744http://dx.doi.org/10.1002/adfm.202204744
ISAPOUR G, LATTUADA M. BIOINSPIRED stimuli-responsive color-changing systems [J]. Adv. Mater., 2018, 30(19): 1707069-1-36. doi: 10.1002/adma.201707069http://dx.doi.org/10.1002/adma.201707069
ZHANG Q, ZHANG Y N, WAN Y, et al. Stimuli-responsive polymers for sensing and reacting to environmental conditions [J]. Prog. Polym. Sci., 2021, 116: 101386-1-34. doi: 10.1016/j.progpolymsci.2021.101386http://dx.doi.org/10.1016/j.progpolymsci.2021.101386
GESHEVA K A, IVANOVA T M, BODUROV G. Transition metal oxide films: technology and “smart windows” electrochromic device performance [J]. Prog. Org. Coat., 2012, 74(4): 635-639. doi: 10.1016/j.porgcoat.2011.07.016http://dx.doi.org/10.1016/j.porgcoat.2011.07.016
WEI Y X, ZHOU J L, ZHENG J M, et al. Improved stability of electrochromic devices using Ti-doped V2O5 film [J]. Electrochim. Acta, 2015, 166: 277-284. doi: 10.1016/j.electacta.2015.03.087http://dx.doi.org/10.1016/j.electacta.2015.03.087
DEB S K. Optical and photoelectric properties and colour centres in thin films of tungsten oxide [J]. Philos. Mag., 1973, 27(4): 801-822. doi: 10.1080/14786437308227562http://dx.doi.org/10.1080/14786437308227562
张观广, 倪浩智, 张啸尘, 等. 旋涂法制备WO3薄膜电致变色性能 [J]. 发光学报, 2019, 40(2): 183-188. doi: 10.3788/fgxb20194002.0183http://dx.doi.org/10.3788/fgxb20194002.0183
ZHANG G G, NI H Z, ZHANG X C, et al. Electrochromic properties of WO3 film by spin-coating [J]. Chin. J. Lumin., 2019, 40(2): 183-188. (in Chinese). doi: 10.3788/fgxb20194002.0183http://dx.doi.org/10.3788/fgxb20194002.0183
RAO T K, ZHOU Y L, JIANG J, et al. Low dimensional transition metal oxide towards advanced electrochromic devices [J]. Nano Energy, 2022, 100: 107479. doi: 10.1016/j.nanoen.2022.107479http://dx.doi.org/10.1016/j.nanoen.2022.107479
SHAO Z W, HUANG A B, MING C, et al. All-solid-state proton-based tandem structures for fast-switching electrochromic devices [J]. Nat. Electronics, 2022, 5(1): 45-52. doi: 10.1038/s41928-021-00697-4http://dx.doi.org/10.1038/s41928-021-00697-4
WU W T, POH W C, LV J, et al. Self-powered and light-adaptable stretchable electrochromic display [J]. Adv. Energy Mater., 2023, 13(18): 2204103. doi: 10.1002/aenm.202370071http://dx.doi.org/10.1002/aenm.202370071
ZHAI Y L, LI J H, SHEN S, et al. Recent advances on dual-band electrochromic materials and devices [J]. Adv. Funct. Mater., 2022, 32(17): 2109848-1-21. doi: 10.1002/adfm.202109848http://dx.doi.org/10.1002/adfm.202109848
SUI C X, PU J K, CHEN T H, et al. Dynamic electrochromism for all-season radiative thermoregulation [J]. Nat. Sustain., 2023, 6(4): 428-437. doi: 10.1038/s41893-022-01023-2http://dx.doi.org/10.1038/s41893-022-01023-2
KE Y J, CHEN J W, LIN C J, et al. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond [J]. Adv. Energy Mater., 2019, 9(39): 1902066-1-38. doi: 10.1002/aenm.201902066http://dx.doi.org/10.1002/aenm.201902066
KORGEL B A. Composite for smarter windows [J]. Nature, 2013, 500(7462): 278-279. doi: 10.1038/500278ahttp://dx.doi.org/10.1038/500278a
ZHANG X, LI W J, LI X, et al. Bio-inspired electrochromic skin based on tungsten oxide [J]. Solar Energy Mater. Solar Cells, 2021, 230: 111195-1-7. doi: 10.1016/j.solmat.2021.111195http://dx.doi.org/10.1016/j.solmat.2021.111195
KARST J, FLOESS M, UBL M, et al. Electrically switchable metallic polymer nanoantennas [J]. Science, 2021, 374(6567): 612-616. doi: 10.1126/science.abj3433http://dx.doi.org/10.1126/science.abj3433
GU C, JIA A B, ZHANG Y M, et al. Emerging electrochromic materials and devices for future displays [J]. Chem. Rev., 2022, 122(18): 14679-14721. doi: 10.1021/acs.chemrev.1c01055http://dx.doi.org/10.1021/acs.chemrev.1c01055
WANG Z, WANG X Y, CONG S, et al. Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities [J]. Nat. Commun., 2020, 11(1): 302-1-9. doi: 10.1038/s41467-019-14194-yhttp://dx.doi.org/10.1038/s41467-019-14194-y
ZHANG W, LI H Z, YU W W, et al. Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices [J]. Light Sci. Appl., 2020, 9: 121-1-11. doi: 10.1038/s41377-020-00366-9http://dx.doi.org/10.1038/s41377-020-00366-9
KO I J, PARK J H, KIM G, et al. High-performance reflective electrochromic device by integrating white reflector and high optical density electrochromic system [J]. Adv. Mater. Interfaces, 2019, 6(18): 1900710-1-8. doi: 10.1002/admi.201900710http://dx.doi.org/10.1002/admi.201900710
DONG W J, LV Y, ZHANG N, et al. Trifunctional NiO-Ag-NiO electrodes for ITO-free electrochromic supercapacitors [J]. J. Mater. Chem. C, 2017, 5(33): 8408-8414. doi: 10.1039/c7tc03120chttp://dx.doi.org/10.1039/c7tc03120c
ZHU Y M, OTLEY M T, ZHANG X Z, et al. Polyelectrolytes exceeding ITO flexibility in electrochromic devices [J]. J. Mater. Chem. C, 2014, 2(46): 9874-9881. doi: 10.1039/c4tc01855ahttp://dx.doi.org/10.1039/c4tc01855a
刘岩, 吕营, 何龙桂, 等. 新型无铟透明导电-电致变色双功能MoO3/Ag/MoO3薄膜的制备及性能研究 [J]. 发光学报, 2016, 37(2): 187-191. doi: 10.3788/fgxb20163702.0187http://dx.doi.org/10.3788/fgxb20163702.0187
LIU Y, LYU Y, HE L G, et al. Preparation and properties of new type of transparent conductive and electrochromic bi-functional indium-free MoO3/Ag/MoO3 thin films [J]. Chin. J. Lumin., 2016, 37(2): 187-191. (in Chinese). doi: 10.3788/fgxb20163702.0187http://dx.doi.org/10.3788/fgxb20163702.0187
ZHOU J L, WEI Y X, LUO G, et al. Electrochromic properties of vertically aligned Ni-doped WO3 nanostructure films and their application in complementary electrochromic devices [J]. J. Mater. Chem. C, 2016, 4(8): 1613-1622. doi: 10.1039/c5tc03750fhttp://dx.doi.org/10.1039/c5tc03750f
HEO S, AGRAWAL A, MILLIRON D J. Wide dynamic range in tunable electrochromic Bragg stacks from doped semiconductor nanocrystals [J]. Adv. Funct. Mater., 2019, 29(37): 1904555-1-10. doi: 10.1002/adfm.201904555http://dx.doi.org/10.1002/adfm.201904555
GUGOLE M, OLSSON O, ROSSI S, et al. Electrochromic inorganic nanostructures with high chromaticity and superior brightness [J]. Nano Lett., 2021, 21(10): 4343-4350. doi: 10.1021/acs.nanolett.1c00904http://dx.doi.org/10.1021/acs.nanolett.1c00904
LEE Y, YUN J, SEO M, et al. Full-color-tunable nanophotonic device using electrochromic tungsten trioxide thin film [J]. Nano Lett., 2020, 20(8): 6084-6090. doi: 10.1021/acs.nanolett.0c02097http://dx.doi.org/10.1021/acs.nanolett.0c02097
XIAO L L, LV Y, DONG W J, et al. Dual-functional WO3 nanocolumns with broadband antireflective and high-performance flexible electrochromic properties [J]. ACS Appl. Mater. Interfaces, 2016, 8(40): 27107-27114. doi: 10.1021/acsami.6b08895http://dx.doi.org/10.1021/acsami.6b08895
DING Y L, WANG M Y, MEI Z Y, et al. Novel prussian white@MnO2-based inorganic electrochromic energy storage devices with integrated flexibility, multicolor, and long life [J]. ACS Appl. Mater. Interfaces, 2022, 14(43): 48833-48843. doi: 10.1021/acsami.2c12484http://dx.doi.org/10.1021/acsami.2c12484
TONG Z Q, HAO J, ZHANG K, et al. Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films [J]. J. Mater. Chem. C, 2014, 2(18): 3651-3658. doi: 10.1039/c3tc32417fhttp://dx.doi.org/10.1039/c3tc32417f
DONG W J, LV Y, XIAO L L, et al. Bifunctional MoO3-WO3/Ag/MoO3-WO3 films for efficient ITO-free electrochromic devices [J]. ACS Appl. Mater. Interfaces, 2016, 8(49): 33842-33847. doi: 10.1021/acsami.6b12346http://dx.doi.org/10.1021/acsami.6b12346
WANG Z, WANG X Y, CONG S, et al. Fusing electrochromic technology with other advanced technologies: a new roadmap for future development [J]. Mater. Sci. Eng. R Rep., 2020, 140: 100524. doi: 10.1016/j.mser.2019.100524http://dx.doi.org/10.1016/j.mser.2019.100524
LLORDÉS A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites [J]. Nature, 2013, 500(7462): 323-326. doi: 10.1038/nature12398http://dx.doi.org/10.1038/nature12398
0
浏览量
248
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构