浏览全部资源
扫码关注微信
1.吉林大学 口腔医学院, 吉林 长春 130021
2.吉林大学 电子科学与工程学院, 集成光电子学国家重点实验室, 吉林 长春 130012
[ "孔庆超(1995-),男,山东济宁人,硕士研究生,2019年于济宁医学院获得学士学位,主要从事光响应纳米材料设计与应用的研究。 E-mail: kongqc20@mails.jlu.edu.cn" ]
[ "王林(1982-),男,安徽芜湖人,博士,教授,主任医师,博士生导师,2011年于吉林大学口腔医学院获得博士学位,主要从事骨组织工程、口腔修复材料、口腔多功能纳米材料等方面的研究。 E-mail: wanglin1982@jlu.edu.cn" ]
[ "董彪(1978-),男,吉林省吉林市人,博士,教授,博士生导师,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事功能纳米材料的生物医学应用方面的研究。 E-mail: dongb@jlu.edu.cn" ]
纸质出版日期:2023-08-05,
收稿日期:2023-04-15,
修回日期:2023-04-27,
扫 描 看 全 文
孔庆超,孙文悦,林金莹等.基于卟啉⁃金属有机框架材料的光动力疗法研究进展[J].发光学报,2023,44(08):1505-1519.
KONG Qingchao,SUN Wenyue,LIN Jinying,et al.Research Progress of Photodynamic Therapy Based on Porphyrin-metal Organic Framework Materials[J].Chinese Journal of Luminescence,2023,44(08):1505-1519.
孔庆超,孙文悦,林金莹等.基于卟啉⁃金属有机框架材料的光动力疗法研究进展[J].发光学报,2023,44(08):1505-1519. DOI: 10.37188/CJL.20230097.
KONG Qingchao,SUN Wenyue,LIN Jinying,et al.Research Progress of Photodynamic Therapy Based on Porphyrin-metal Organic Framework Materials[J].Chinese Journal of Luminescence,2023,44(08):1505-1519. DOI: 10.37188/CJL.20230097.
卟啉⁃金属有机框架(MOFs)材料是由金属节点和卟啉有机配体构成的一类新型多孔材料,MOFs骨架上的卟啉配体在光激发下,可以发挥光动力学治疗(PDT)作用。这类多孔结构的PDT材料在疾病治疗中,可以发挥载药、多功能修饰等功能,某些金属位点独特的MOFs还具有纳米酶功能。近年来,这类卟啉⁃MOFs已经成为PDT领域的重要研究方向。目前,在推向临床前,这类材料还需要解决氧气浓度、能量传递效率等问题,研究者也给出了诸多解决方案,根据实际应用过程中所面对的不同环境,采取不同手段来增强PDT的效果,包括提高氧气浓度、改进能量传递过程、消耗功能分子、产生信号分子以及协同策略等。本文综述了近年来的代表性工作,包括卟啉⁃MOFs材料以及PDT产生的机制,卟啉⁃MOFs材料PDT的应用和最新进展,并针对卟啉⁃MOFs材料的PDT在生物医学领域未来发展趋势进行了展望。
Porphyrin-metal-organic frameworks (MOFs) materials are a new class of porous materials composed of metal nodes and porphyrin organic ligands. The porphyrin ligands on the MOFs can exert photodynamic therapy (PDT) under light excitation. This kind of PDT material with porous structure can play the functions of drug loading and multifunctional modification in the treatment of diseases. Some MOFs with unique metal sites also have the function of nanozymes. In recent years, this kind of porphyrin-MOFs has become an important research direction in the field of PDT. At present, such materials need to solve problems such as oxygen concentration and energy transfer efficiency before being promoted to the clinic. Researchers have also given many solutions, and adopt different methods to enhance PDT according to different environments faced in the actual application process, including increasing oxygen concentration, improving the energy transfer process, consumption of functional molecules, generation of signal molecules and synergistic strategies. This paper reviews the representative work in recent years, including porphyrin-MOFs materials and the mechanism of PDT generation, the application and latest progress of PDT of porphyrin-MOFs materials. Finally, the future development trend of PDT for porphyrin-MOFs materials in the field of biomedicine has prospected.
卟啉金属有机框架光动力疗法
porphyrinsmetal-organic frameworksphotodynamic therapy
BROWN S B, BROWN E A, WALKER I. The present and future role of photodynamic therapy in cancer treatment [J]. Lancet Oncol., 2004, 5(8): 497-508. doi: 10.1016/s1470-2045(04)01529-3http://dx.doi.org/10.1016/s1470-2045(04)01529-3
HU D R, PAN M, YU Y, et al. Application of nanotechnology for enhancing photodynamic therapy via ameliorating, neglecting, or exploiting tumor hypoxia [J]. VIEW, 2020, 1(1): e6-1-22. doi: 10.1002/viw2.6http://dx.doi.org/10.1002/viw2.6
南福春, 薛小矿, 葛介超, 等. 红光/近红外光响应碳点在肿瘤治疗中的应用进展 [J]. 发光学报, 2021, 42(8): 1155-1171. doi: 10.37188/CJL.20210163http://dx.doi.org/10.37188/CJL.20210163
NAN F C, XUE X K, GE J C, et al. Recent advances of red/near infrared light responsive carbon dots for tumor therapy [J]. Chin. J. Lumin., 2021, 42(8): 1155-1171. (in Chinese). doi: 10.37188/CJL.20210163http://dx.doi.org/10.37188/CJL.20210163
南福春, 杨阳, 赵晓智, 等. 碳点用于荧光成像介导的原位膀胱癌靶向光动力/光热治疗 [J]. 发光学报, 2022, 43(4): 608-619. doi: 10.37188/CJL.20220017http://dx.doi.org/10.37188/CJL.20220017
NAN F C, YANG Y, ZHAO X Z, et al. Orthotopic bladder tumor targeted carbon dots for fluorescence imaging-guided phototherapy [J]. Chin. J. Lumin., 2022, 43(4): 608-619. (in Chinese). doi: 10.37188/CJL.20220017http://dx.doi.org/10.37188/CJL.20220017
LI X S, KWON N, GUO T, et al. Innovative strategies for hypoxic-tumor photodynamic therapy [J]. Angew. Chem. Int. Ed., 2018, 57(36): 11522-11531. doi: 10.1002/anie.201805138http://dx.doi.org/10.1002/anie.201805138
HU X J, ZHANG H, WANG Y T, et al. Synergistic antibacterial strategy based on photodynamic therapy: progress and perspectives [J]. Chem. Eng. J., 2022, 450: 138129. doi: 10.1016/j.cej.2022.138129http://dx.doi.org/10.1016/j.cej.2022.138129
BADRAN Z, RAHMAN B, DE BONFILS P, et al. Antibacterial nanophotosensitizers in photodynamic therapy: an update [J]. Drug Discov. Today, 2023, 28(4): 103493. doi: 10.1016/j.drudis.2023.103493http://dx.doi.org/10.1016/j.drudis.2023.103493
SAI D L, LEE J, NGUYEN D L, et al. Tailoring photosensitive ROS for advanced photodynamic therapy [J]. Exp. Mol. Med., 2021, 53(4): 495-504. doi: 10.1038/s12276-021-00599-7http://dx.doi.org/10.1038/s12276-021-00599-7
ITOO A M, PAUL M, PADAGA S G, et al. Nanotherapeutic intervention in photodynamic therapy for cancer [J]. ACS Omega, 2022, 7(50): 45882-45909. doi: 10.1021/acsomega.2c05852http://dx.doi.org/10.1021/acsomega.2c05852
KANG M S, LEE S Y, KIM K S, et al. State of the art biocompatible gold nanoparticles for cancer theragnosis [J]. Pharmaceutics, 2020, 12(8): 701-1-22. doi: 10.3390/pharmaceutics12080701http://dx.doi.org/10.3390/pharmaceutics12080701
ZHOU Z J, ZHANG L, ZHANG Z R, et al. Advances in photosensitizer-related design for photodynamic therapy [J]. Asian J. Pharm. Sci., 2021, 16(6): 668-686. doi: 10.1016/j.ajps.2020.12.003http://dx.doi.org/10.1016/j.ajps.2020.12.003
WANG Q, ASTRUC D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis [J]. Chem. Rev., 2020, 120(2): 1438-1511. doi: 10.1021/acs.chemrev.9b00223http://dx.doi.org/10.1021/acs.chemrev.9b00223
STOCK N, BISWAS S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites [J]. Chem. Rev., 2012, 112(2): 933-969. doi: 10.1021/cr200304ehttp://dx.doi.org/10.1021/cr200304e
YU J, MU C, YAN B Y, et al. Nanoparticle/MOF composites: preparations and applications [J]. Mater. Horiz., 2017, 4(4): 557-569. doi: 10.1039/c6mh00586ahttp://dx.doi.org/10.1039/c6mh00586a
REN J C, HUANG Y L, ZHU H, et al. Recent progress on MOF-derived carbon materials for energy storage [J]. Carbon Energy, 2020, 2(2): 176-202. doi: 10.1002/cey2.44http://dx.doi.org/10.1002/cey2.44
DOLGOPOLOVA E A, RICE A M, MARTIN C R, et al. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements [J]. Chem. Soc. Rev., 2018, 47(13): 4710-4728. doi: 10.1039/c7cs00861ahttp://dx.doi.org/10.1039/c7cs00861a
WU T, LIU X J, LIU Y, et al. Application of QD-MOF composites for photocatalysis: energy production and environmental remediation [J]. Coord. Chem. Rev., 2020, 403: 213097-1-16. doi: 10.1016/j.ccr.2019.213097http://dx.doi.org/10.1016/j.ccr.2019.213097
LI X F, ZHU Q L. MOF-based materials for photo- and electrocatalytic CO2 reduction [J]. EnergyChem, 2020, 2(3): 100033. doi: 10.1016/j.enchem.2020.100033http://dx.doi.org/10.1016/j.enchem.2020.100033
MALLAKPOUR S, NIKKHOO E, HUSSAIN C M. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment [J]. Coord. Chem. Rev., 2022, 451: 214262-1-21. doi: 10.1016/j.ccr.2021.214262http://dx.doi.org/10.1016/j.ccr.2021.214262
LIU Y W, ZHOU L Y, DONG Y, et al. Recent developments on MOF-based platforms for antibacterial therapy [J]. RSC Med. Chem., 2021, 12(6): 915-928. doi: 10.1039/d0md00416bhttp://dx.doi.org/10.1039/d0md00416b
XUE X D, LINDSTROM A, LI Y P. Porphyrin-based nanomedicines for cancer treatment [J]. Bioconjugate Chem., 2019, 30(6): 1585-1603. doi: 10.1021/acs.bioconjchem.9b00231http://dx.doi.org/10.1021/acs.bioconjchem.9b00231
刘庆, 张星, 石士考, 等. 金属卟啉配合物在无机层状框架中的插入组装及光学性能 [J]. 发光学报, 2011, 32(6): 617-621. doi: 10.3788/fgxb20113206.0617http://dx.doi.org/10.3788/fgxb20113206.0617
LIU Q, ZHANG X, SHI S K, et al. Intercalation assembly and optical properties of metalloporphyrin into an inorganic lamellar framework [J]. Chin. J. Lumin., 2011, 32(6): 617-621. (in Chinese). doi: 10.3788/fgxb20113206.0617http://dx.doi.org/10.3788/fgxb20113206.0617
FENG L, WANG K Y, JOSEPH E, et al. Catalytic porphyrin framework compounds [J]. Trends Chem., 2020, 2(6): 555-568. doi: 10.1016/j.trechm.2020.01.003http://dx.doi.org/10.1016/j.trechm.2020.01.003
XU B L, HUANG Z J, LIU Y H, et al. MOF-based nanomedicines inspired by structures of natural active components [J]. Nano Today, 2023, 48: 101690. doi: 10.1016/j.nantod.2022.101690http://dx.doi.org/10.1016/j.nantod.2022.101690
CHEN J J, ZHU Y F, KASKEL S. Porphyrin-based metal-organic frameworks for biomedical applications [J]. Angew. Chem. Int. Ed., 2021, 60(10): 5010-5035. doi: 10.1002/anie.201909880http://dx.doi.org/10.1002/anie.201909880
陈之尧, 刘捷威, 崔浩, 等. 卟啉金属-有机框架在二氧化碳捕获与转化上的应用研究 [J]. 化学学报, 2019, 77(3): 242-252. doi: 10.6023/a18100440http://dx.doi.org/10.6023/a18100440
CHEN Z Y, LIU J W, CUI H, et al. Applications of porphyrin metal-organic frameworks in CO2 capture and conversion [J]. Acta Chim. Sinica, 2019, 77(3): 242-252. (in Chinese). doi: 10.6023/a18100440http://dx.doi.org/10.6023/a18100440
YOUNIS S A, LIM D K, KIM K H, et al. Metalloporphyrinic metal-organic frameworks: controlled synthesis for catalytic applications in environmental and biological media [J]. Adv. Colloid Interface Sci., 2020, 277: 102108-1-5. doi: 10.1016/j.cis.2020.102108http://dx.doi.org/10.1016/j.cis.2020.102108
MA L, JIANG F B, FAN X, et al. Metal⁃organic-framework-engineered enzyme-mimetic catalysts [J]. Adv. Mater., 2020, 32(49): 2003065-1-28. doi: 10.1002/adma.202003065http://dx.doi.org/10.1002/adma.202003065
GOLDBERG I. Crystal engineering of porphyrin framework solids [J]. Chem. Commun., 2005(10): 1243-1254. doi: 10.1039/b416425chttp://dx.doi.org/10.1039/b416425c
DISKIN-POSNER Y, DAHAL S, GOLDBERG I. New effective synthons for supramolecular self-assembly of meso-carboxyphenylporphyrins [J]. Chem. Commun., 2000(7): 585-586. doi: 10.1039/b001189ohttp://dx.doi.org/10.1039/b001189o
LIU X Y, ZHAN W J, GAO G, et al. Apoptosis-amplified assembly of porphyrin nanofiber enhances photodynamic therapy of oral tumor [J]. J. Am. Chem. Soc., 2023, 145(14): 7918-7930. doi: 10.1021/jacs.2c13189http://dx.doi.org/10.1021/jacs.2c13189
SONG H Q, CAI Z H, LI J Y, et al. Light triggered release of a triple action porphyrin-cisplatin conjugate evokes stronger immunogenic cell death for chemotherapy, photodynamic therapy and cancer immunotherapy [J]. J. Nanobiotechnol., 2022, 20(1): 329-1-11. doi: 10.1186/s12951-022-01531-5http://dx.doi.org/10.1186/s12951-022-01531-5
YUAN C, LI Y, XU Z Q, et al. Imaging-guided synergistic photo-chemotherapy using doxorubicin-loaded gadolinium porphyrin-based metal-organic framework nanosheets [J]. ACS Appl. Nano Mater., 2022, 5(10): 15318-15327. doi: 10.1021/acsanm.2c03390http://dx.doi.org/10.1021/acsanm.2c03390
ZHOU Z, WANG T, HU T T, et al. Facile synthesis of 2D Al-TCPP MOF nanosheets for efficient sonodynamic cancer therapy [J]. Mater. Chem. Front., 2023, 7(8): 1684-1693. doi: 10.1039/d2qm01333ahttp://dx.doi.org/10.1039/d2qm01333a
LI X Q, ZHAO X S, CHU D D, et al. Silver nanoparticle-decorated 2D Co-TCPP MOF nanosheets for synergistic photodynamic and silver ion antibacterial [J]. Surf. Interfaces, 2022, 33: 102247. doi: 10.1016/j.surfin.2022.102247http://dx.doi.org/10.1016/j.surfin.2022.102247
YU W M, ZHEN W Q, ZHANG Q Z, et al. Porphyrin-based metal-organic framework compounds as promising nanomedicines in photodynamic therapy [J]. ChemMedChem, 2020, 15(19): 1766-1775. doi: 10.1002/cmdc.202000353http://dx.doi.org/10.1002/cmdc.202000353
PIRADI V, XU X P, YIN H, et al. Highly semitransparent indoor nonfullerene organic solar cells based on benzodithiophene-bridged porphyrin dimers [J]. Energy Technol., 2022, 10(2): 2100908-1-9. doi: 10.1002/ente.202100908http://dx.doi.org/10.1002/ente.202100908
LI Y X, LIU Y M, WANG H, et al. Water-soluble porphyrin-based nanoparticles derived from electrostatic interaction for enhanced photodynamic therapy [J]. ACS Appl. Bio Mater., 2022, 5(2): 881-888. doi: 10.1021/acsabm.1c01262http://dx.doi.org/10.1021/acsabm.1c01262
HASSANZADEH GOJI N, RAMEZANI M, SALJOOGHI A S, et al. Porphyrin-based metal-organic frameworks: focus on diagnostic and therapeutic applications [J]. J. Nanostruct. Chem., 2022, doi: 10.1007/s40097-022-00500-6http://dx.doi.org/10.1007/s40097-022-00500-6.
WEN M, YU N, WU S W, et al. On-demand assembly of polymeric nanoparticles for longer-blood-circulation and disassembly in tumor for boosting sonodynamic therapy [J]. Bioact. Mater., 2022, 18: 242-253. doi: 10.1016/j.bioactmat.2022.03.009http://dx.doi.org/10.1016/j.bioactmat.2022.03.009
WANG Z J, YU N, ZHANG J L, et al. Nanoscale Hf-hematoporphyrin frameworks for synergetic sonodynamic/radiation therapy of deep-seated tumors [J]. J. Colloid Interface Sci., 2022, 626: 803-814. doi: 10.1016/j.jcis.2022.06.174http://dx.doi.org/10.1016/j.jcis.2022.06.174
REN Q, YU N, WANG L Y, et al. Nanoarchitectonics with metal-organic frameworks and platinum nanozymes with improved oxygen evolution for enhanced sonodynamic/chemo-therapy [J]. J. Colloid Interface Sci., 2022, 614: 147-159. doi: 10.1016/j.jcis.2022.01.050http://dx.doi.org/10.1016/j.jcis.2022.01.050
GENG P, YU N, MACHARIA D K, et al. MOF-derived CuS@Cu-MOF nanocomposites for synergistic photothermal-chemodynamic-chemo therapy [J]. Chem. Eng. J., 2022, 441: 135964-1-11. doi: 10.1016/j.cej.2022.135964http://dx.doi.org/10.1016/j.cej.2022.135964
XU H, YU N, ZHANG J L, et al. Biocompatible Fe-Hematoporphyrin coordination nanoplatforms with efficient sonodynamic-chemo effects on deep-seated tumors [J]. Biomaterials, 2020, 257: 120239-1-11. doi: 10.1016/j.biomaterials.2020.120239http://dx.doi.org/10.1016/j.biomaterials.2020.120239
于印霄, 王小卉, 陈雪桥, 等. 一种基于DPBF的单线态氧纳米探针 [J]. 发光学报, 2019, 40(8): 987-992. doi: 10.3788/fgxb20194008.0987http://dx.doi.org/10.3788/fgxb20194008.0987
YU Y X, WANG X H, CHEN X Q, et al. A singlet oxygen nanoprobe based on DPBF [J]. Chin. J. Lumin., 2019, 40(8): 987-992. (in Chinese). doi: 10.3788/fgxb20194008.0987http://dx.doi.org/10.3788/fgxb20194008.0987
张云秀, 贾庆岩, 葛介超. 绿茶衍生碳点用于光动力治疗耐药菌感染 [J]. 发光学报, 2023, doi: 10.37188/CJL.20230036http://dx.doi.org/10.37188/CJL.20230036.
ZHANG Y X, JIA Q Y, GE J C. Thea viridis derived carbon dots for drug-resistant bacterial infections by photodynamic therapy [J]. Chin. J. Lumin., 2023, doi: 10.37188/CJL.20230036.http://dx.doi.org/10.37188/CJL.20230036.(in Chinese)
谢宏琴, 谢样梓, 王玥婷, 等. 基于近红外聚集诱导发光分子的磁性纳米材料用于光增强杀菌 [J]. 发光学报, 2022, 43(10): 1628-1635. doi: 10.37188/CJL.20220015http://dx.doi.org/10.37188/CJL.20220015
XIE H Q, XIE Y Z, WANG Y T, et al. Utilizing NIR AIE luminogen based magnetic nanoparticle for light-enhanced bacterial killing [J]. Chin. J. Lumin., 2022, 43(10): 1628-1635. (in Chinese). doi: 10.37188/CJL.20220015http://dx.doi.org/10.37188/CJL.20220015
WARRIER A, MAZUMDER N, PRABHU S, et al. Photodynamic therapy to control microbial biofilms [J]. Photodiagnosis Photodyn. Ther., 2021, 33: 102090-1-6. doi: 10.1016/j.pdpdt.2020.102090http://dx.doi.org/10.1016/j.pdpdt.2020.102090
WANG Y Y, LIU Y C, SUN H W, et al. Type I photodynamic therapy by organic-inorganic hybrid materials: from strategies to applications [J]. Coord. Chem. Rev., 2019, 395: 46-62. doi: 10.1016/j.ccr.2019.05.016http://dx.doi.org/10.1016/j.ccr.2019.05.016
GUO L Y, XIA Q S, QIN J L, et al. Skin-safe nanophotosensitizers with highly-controlled synthesized polydopamine shell for synergetic chemo-photodynamic therapy [J]. J. Colloid Interface Sci., 2022, 616: 81-92. doi: 10.1016/j.jcis.2022.02.046http://dx.doi.org/10.1016/j.jcis.2022.02.046
LIU B, LIU Z C, LU X J, et al. Controllable growth of drug-encapsulated metal-organic framework (MOF) on porphyrinic MOF for PDT/chemo-combined therapy [J]. Mater. Des., 2023, 228: 111861. doi: 10.1016/j.matdes.2023.111861http://dx.doi.org/10.1016/j.matdes.2023.111861
ZHU Z Q, WANG L, PENG Y O, et al. Continuous self-oxygenated double-layered hydrogel under natural light for real-time infection monitoring, enhanced photodynamic therapy, and hypoxia relief in refractory diabetic wounds healing [J]. Adv. Funct. Mater., 2022, 32(32): 2201875-1-18. doi: 10.1002/adfm.202201875http://dx.doi.org/10.1002/adfm.202201875
DENG Q Q, SUN P P, ZHANG L, et al. Porphyrin MOF dots-based, function-adaptive nanoplatform for enhanced penetration and photodynamic eradication of bacterial biofilms [J]. Adv. Funct. Mater., 2019, 29(30): 1903018-1-9. doi: 10.1002/adfm.201903018http://dx.doi.org/10.1002/adfm.201903018
CHEN Y, LI D Q, ZHONG Y P, et al. NIR regulated upconversion nanoparticles@metal-organic framework composite hydrogel dressing with catalase-like performance and enhanced antibacterial efficacy for accelerating wound healing [J]. Int. J. Biol. Macromol., 2023, 235: 123683. doi: 10.1016/j.ijbiomac.2023.123683http://dx.doi.org/10.1016/j.ijbiomac.2023.123683
JIAO J J, HE J, LI M M, et al. A porphyrin-based metallacage for enhanced photodynamic therapy [J]. Nanoscale, 2022, 14(17): 6373-6383. doi: 10.1039/d1nr08293khttp://dx.doi.org/10.1039/d1nr08293k
LU K D, HE C B, LIN W B. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer [J]. J. Am. Chem. Soc., 2014, 136(48): 16712-16715. doi: 10.1021/ja508679hhttp://dx.doi.org/10.1021/ja508679h
LI J, SONG S, MENG J S, et al. 2D MOF periodontitis photodynamic ion therapy [J]. J. Am. Chem. Soc., 2021, 143(37): 15427-15439. doi: 10.1021/jacs.1c07875http://dx.doi.org/10.1021/jacs.1c07875
ZHANG H L, MA W, WANG Z Q, et al. Self-supply oxygen ROS reactor via Fenton-like reaction and modulating glutathione for amplified cancer therapy effect [J]. Nanomaterials, 2022, 12(14): 2509-1-15. doi: 10.3390/nano12142509http://dx.doi.org/10.3390/nano12142509
WANG C, CAO F J, RUAN Y D, et al. Specific generation of singlet oxygen through the Russell mechanism in hypoxic tumors and GSH depletion by Cu-TCPP nanosheets for cancer therapy [J]. Angew. Chem. Int. Ed., 2019, 58(29): 9846-9850. doi: 10.1002/anie.201903981http://dx.doi.org/10.1002/anie.201903981
LI S Y, CHENG H, XIE B R, et al. Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy [J]. ACS Nano, 2017, 11(7): 7006-7018. doi: 10.1021/acsnano.7b02533http://dx.doi.org/10.1021/acsnano.7b02533
QI F, WANG Z, YANG L, et al. A collaborative CeO2@metal-organic framework nanosystem to endow scaffolds with photodynamic antibacterial effect [J]. Mater. Today Chem., 2023, 27: 101336. doi: 10.1016/j.mtchem.2022.101336http://dx.doi.org/10.1016/j.mtchem.2022.101336
XIA M T, YAN Y, PU H Y, et al. Glutathione responsive nitric oxide release for enhanced photodynamic therapy by a porphyrinic MOF nanosystem [J]. Chem. Eng. J., 2022, 442: 136295-1-12. doi: 10.1016/j.cej.2022.136295http://dx.doi.org/10.1016/j.cej.2022.136295
SUN J, FAN Y, YE W, et al. Near-infrared light triggered photodynamic and nitric oxide synergistic antibacterial nanocomposite membrane [J]. Chem. Eng. J., 2021, 417: 128049-1-12. doi: 10.1016/j.cej.2020.128049http://dx.doi.org/10.1016/j.cej.2020.128049
CAI X, ZHAO Y W, WANG L, et al. Synthesis of Au@MOF core-shell hybrids for enhanced photodynamic/photothermal therapy [J]. J. Mater. Chem. B, 2021, 9(33): 6646-6657. doi: 10.1039/d1tb00800ehttp://dx.doi.org/10.1039/d1tb00800e
LUO Y, LIU X M, TAN L, et al. Enhanced photocatalytic and photothermal properties of ecofriendly metal-organic framework heterojunction for rapid sterilization [J]. Chem. Eng. J., 2021, 405: 126730. doi: 10.1016/j.cej.2020.126730http://dx.doi.org/10.1016/j.cej.2020.126730
ZHAO Y W, WANG J N, CAI X, et al. Metal–organic frameworks with enhanced photodynamic therapy: synthesis, erythrocyte membrane camouflage, and aptamer-targeted aggregation [J]. ACS Appl. Mater. Interfaces, 2020, 12(21): 23697-23706. doi: 10.1021/acsami.0c04363http://dx.doi.org/10.1021/acsami.0c04363
0
浏览量
127
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构