浏览全部资源
扫码关注微信
1.广东省晶体与激光技术工程研究中心, 广东 广州 510632
2.广东省光纤传感与通信重点实验室, 广东 广州 510632
3.暨南大学 光电工程系, 广东 广州 510632
[ "陈邱笛(2001-),男,江苏如东人,硕士研究生, 2022年于暨南大学获得学士学位,主要从事激光与光电功能晶体材料的研究。E-mail: Cqd596918045@163.com" ]
[ "张沛雄(1987-),男,广东潮州人,博士,教授,2016年于中国科学院上海光学精密机械研究所获得博士学位,主要从事激光与光电功能晶体材料的研究。pxzhang@jnu.edu.cn" ]
纸质出版日期:2023-08-05,
收稿日期:2023-04-13,
修回日期:2022-05-06,
扫 描 看 全 文
陈邱笛,郑为比,张沛雄等.基于新型Nd∶Gd0.1Y0.9AlO3晶体的540 nm倍频绿光激光器[J].发光学报,2023,44(08):1463-1470.
CHEN Qiudi,ZHENG Weibi,ZHANG Peixiong,et al.540 nm Frequency-doubled Green Laser Realized by A Novel Nd∶Gd0.1Y0.9AlO3 Crystal[J].Chinese Journal of Luminescence,2023,44(08):1463-1470.
陈邱笛,郑为比,张沛雄等.基于新型Nd∶Gd0.1Y0.9AlO3晶体的540 nm倍频绿光激光器[J].发光学报,2023,44(08):1463-1470. DOI: 10.37188/CJL.20230089.
CHEN Qiudi,ZHENG Weibi,ZHANG Peixiong,et al.540 nm Frequency-doubled Green Laser Realized by A Novel Nd∶Gd0.1Y0.9AlO3 Crystal[J].Chinese Journal of Luminescence,2023,44(08):1463-1470. DOI: 10.37188/CJL.20230089.
本工作首次在新型Nd∶Gd
0.1
Y
0.9
AlO
3
(Nd∶GYAP)晶体上实现了540 nm倍频绿光激光器。Nd∶GYAP晶体产生在1 μm波段的基频激光中心波长为1 079.4 nm,在此基础上利用LBO晶体产生的倍频绿色激光的中心波长为539.4 nm,阈值为46 mW,最大输出功率为65 mW。这一激光系统产生的约为540 nm的绿色激光相较于传统Nd离子掺杂的晶体1 064 nm激光倍频而来的532 nm绿色激光,可以有效地避开Nd
3+
位于530 nm附近的吸收峰。因此,具有更长波长、发射峰位于约540 nm处的绿色激光器可以使激光输出更有效,并扩展绿色激光器的应用。
The 540 nm frequency-doubled green laser was first realized on a novel Nd∶Gd
0.1
Y
0.9
AlO
3
(Nd∶GYAP) crystal. The fundamental-frequency wavelength that was generated by Nd∶GYAP crystal centered at 1 079.4 nm, and the frequency-doubled green laser was centered at 539.4 nm with a threshold of 46 mW and a maximum output power of 65 mW. An LBO was selected as the frequency-doubling crystal. The ~540 nm green laser can avoid the absorption peak of Nd
3+
at near 530 nm. The green laser with longer wavelengths at approximately 540 nm can make the output more efficient, and expand the application of the green laser.
LBONd∶GYAP倍频540 nm激光绿色激光器
LBONd∶GYAPfrequency doubling540 nm lasergreen laser
HE C J, YU H J, ZHANG J Y, et al. High efficiency single-pass SHG of low power CWML and QML laser in an MgO∶PPLN [J]. Opt. Laser Technol., 2018, 106: 197-201. doi: 10.1016/j.optlastec.2018.03.027http://dx.doi.org/10.1016/j.optlastec.2018.03.027
张雨彤, 朱梦淇, 王彪, 等. 碳酸钙镁石家族非线性光学晶体研究进展 [J]. 人工晶体学报, 2022, 51(S1): 1608-1625.
ZHANG Y T, ZHU M Q, WANG B, et al. Research progress of huntite family nonlinear optical crystals [J]. J. Synth. Cryst., 2022, 51(S1): 1608-1625. (in Chinese)
ZHAO J, MEI D J, WANG W K, et al. Recent advances in nonlinear optical rare earth structures [J]. J. Rare Earths, 2021, 39(12): 1455-1466. doi: 10.1016/j.jre.2021.07.005http://dx.doi.org/10.1016/j.jre.2021.07.005
ZHANG B, XU C Q. Compact, and efficient continues wave intra-cavity frequency doubling Nd∶YVO4/MgO∶PPLN 542/543 nm green lasers [J]. Opt. Laser Technol., 2020, 122: 105885-1-4. doi: 10.1016/j.optlastec.2019.105885http://dx.doi.org/10.1016/j.optlastec.2019.105885
CHEN Y F, PAN Y Y, LIU Y C, et al. Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd∶YVO4 self-Raman crystal [J]. Opt. Express, 2019, 27(3): 2029-2035. doi: 10.1364/oe.27.002029http://dx.doi.org/10.1364/oe.27.002029
LORENZ S, BEYER J, FUCHS M, et al. The potential of reflectance and laser induced luminescence spectroscopy for near-field rare earth element detection in mineral exploration [J]. Remote Sens., 2019, 11(1): 21-1-12. doi: 10.3390/rs11010021http://dx.doi.org/10.3390/rs11010021
MUHAMMAD N, WHITEHEAD D, BOOR A, et al. Comparison of dry and wet fibre laser profile cutting of thin 316L stainless steel tubes for medical device applications [J]. J. Mater. Process. Technol., 2010, 210(15): 2261-2267. doi: 10.1016/j.jmatprotec.2010.08.015http://dx.doi.org/10.1016/j.jmatprotec.2010.08.015
SHA Y C, JIA Z C, LI Z W, et al. Dislocation analysis of germanium wafers under 1 080 nm laser ablation [J]. Appl. Opt., 2020, 59(23): 6803-6808. doi: 10.1364/ao.387936http://dx.doi.org/10.1364/ao.387936
LAPOTKO D, KUCHINSKY G, ANTONISHINA E, et al. Laser viability method for red blood cell-state monitoring [C]. Proceedings of the SPIE 2628, Optical and Imaging Techniques for Biomonitoring, Barcelona, 1996: 340-348. doi: 10.1117/12.230002http://dx.doi.org/10.1117/12.230002
HUANG C H, ZHANG G, WEI Y, et al. A compact and efficient four-wavelength Q-switched Nd∶YAP laser [J]. Laser Phys., 2010, 20(4): 745-749. doi: 10.1134/s1054660x1007011xhttp://dx.doi.org/10.1134/s1054660x1007011x
“中国晶体珍宝”——LBO晶体 [J]. 人工晶体学报, 2022, 51(8): 1512. doi: 10.1088/0256-307x/39/8/080501http://dx.doi.org/10.1088/0256-307x/39/8/080501
“Treasure of Chinese crystal”:LBO crystal [J]. J. Artif. Cryst., 2022, 51(8): 1512. (in Chinese). doi: 10.1088/0256-307x/39/8/080501http://dx.doi.org/10.1088/0256-307x/39/8/080501
SHANG L J, CAO Z Z, XU H, et al. An intracavity frequency doubled Nd∶YVO4 red 671 nm laser based on LBO crystal [J]. Optics, 2019, 8(2): 7-10.
ZHANG T, ZHENG W X, FENG K, et al. Towards power scaling of simple CW ultraviolet via Pr∶LiYF4-LBO laser at 320 nm [J]. IEEE Photonics Technol. Lett., 2022, 34(2): 129-132. doi: 10.1109/lpt.2022.3142012http://dx.doi.org/10.1109/lpt.2022.3142012
GALLETTI M, OLIVEIRA P, GALIMBERTI M, et al. Ultra-broadband all-OPCPA petawatt facility fully based on LBO [J]. High Power Laser Sci. Eng., 2020, 8: e31-1-16. doi: 10.1017/hpl.2020.31http://dx.doi.org/10.1017/hpl.2020.31
ZOU J Y, ZHOU L B, ZHENG W X, et al. An in-band diode-end-pumped high-power and high-efficiency ultrashort pulse Nd∶ YVO4 bulk laser mode-locked by a frequency doubling LBO crystal [J]. Infrared Phys. Technol., 2021, 116: 103759-1-5. doi: 10.1016/j.infrared.2021.103759http://dx.doi.org/10.1016/j.infrared.2021.103759
SONG J J, MENG X H, WANG Z H, et al. Generation of femtosecond laser pulse at 1.43 GHz from an optical parametric oscillator based on LBO crystal [J]. Chin. Phys. Lett., 2019, 36(12): 124206-1-4. doi: 10.1088/0256-307x/36/12/124206http://dx.doi.org/10.1088/0256-307x/36/12/124206
范锦涛, 胡明列, 顾澄琳, 等. 基于LBO的高功率飞秒绿光抽运的光学参量振荡器 [J]. 中国激光, 2014, 41(9): 0902009-1-4. doi: 10.3788/cjl201441.0902009http://dx.doi.org/10.3788/cjl201441.0902009
FAN J T, HU M L, GU C L, et al. High power femtosecond green-pumped optical parametric oscillator based on lithium triborate [J]. Chin. J. Lasers, 2014, 41(9): 0902009-1-4. (in Chinese). doi: 10.3788/cjl201441.0902009http://dx.doi.org/10.3788/cjl201441.0902009
LI X D, ZHOU Y P, XU H B, et al. High-stability, high-pulse-energy MOPA laser system based on composite Nd∶YAG crystal with multiple doping concentrations [J]. Opt. Laser Technol., 2022, 152: 108080-1-5. doi: 10.1016/j.optlastec.2022.108080http://dx.doi.org/10.1016/j.optlastec.2022.108080
MEIER T, WILLKE B, DANZMANN K. Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode [J]. Opt. Lett., 2010, 35(22): 3742-3744. doi: 10.1364/ol.35.003742http://dx.doi.org/10.1364/ol.35.003742
GUO Y R, SU J, LU H D. Optimization of the nonlinear crystal length for high-power single-frequency intracavity frequency-doubling lasers [J]. Appl. Opt., 2022, 61(26): 7565-7570. doi: 10.1364/ao.470487http://dx.doi.org/10.1364/ao.470487
付鑫鹏, 付喜宏, 姚聪, 等. 基于超薄层MoS2可饱和吸收体的被动调Q固体Nd∶YAG激光器 [J]. 发光学报, 2021, 42(5): 668-673. doi: 10.37188/CJL.20210030http://dx.doi.org/10.37188/CJL.20210030
FU X P, FU X H, YAO C, et al. Passive Q-switched solid-state Nd∶YAG laser based on ultrathin MoS2 saturable absorber [J]. Chin. J. Lumin., 2021, 42(5): 668-673. (in Chinese). doi: 10.37188/CJL.20210030http://dx.doi.org/10.37188/CJL.20210030
张恒利, 徐浏, 毛叶飞, 等. 880 nm LD端面泵浦Nd∶YVO4板条激光实验研究 [J]. 量子电子学报, 2014, 31(1): 117.
ZHANG H L, XU L, MAO Y F, et al. 880 nm LD end-pumped Nd∶YVO4 experimental research on flat noodles laser [J]. J. Quantum Electron., 2014, 31(1): 117. (in Chinese)
BENSAID B, RAYMOND F, LEROUX M, et al. Influence of luminescence self‐absorption on photoluminescence decay in GaAs [J]. J. Appl. Phys., 1989, 66(11): 5542-5548. doi: 10.1063/1.343658http://dx.doi.org/10.1063/1.343658
WANG W, SUN L X, ZHANG P, et al. Reducing self-absorption effect by double-pulse combination in laser-induced breakdown spectroscopy [J]. Microchem. J., 2022, 172: 106964. doi: 10.1016/j.microc.2021.106964http://dx.doi.org/10.1016/j.microc.2021.106964
LI D, LIU Q, ZHANG P X, et al. Crystal growth, optical properties and laser performance of new mixed Nd3+ doped Gd0.1Y0.9AlO3 crystal [J]. J. Alloys Compd., 2019, 789: 664-669. doi: 10.1016/j.jallcom.2019.03.116http://dx.doi.org/10.1016/j.jallcom.2019.03.116
丁言国, 叶崇志. YAlO3∶Ce晶体的生长及性能研究 [J]. 人工晶体学报, 2022, 51(6): 965-972.
DING Y G, YE C Z. Growth and properties of YAlO3∶Ce crystal [J]. J. Synth. Cryst., 2022, 51(6): 965-972. (in Chinese)
ZHANG P X, WANG R, HUANG X B, et al. Sensitization and deactivation effects to Er3+ at ∼2.7 μm mid-infrared emission by Nd3+ ions in Gd0.1Y0.9AlO3 crystal [J]. J. Alloys Compd., 2018, 750: 147-152. doi: 10.1016/j.jallcom.2018.03.391http://dx.doi.org/10.1016/j.jallcom.2018.03.391
WANG Y H, CHEN X G, ZHANG P X, et al. Growth, spectroscopic features and efficient 2 μm continuous-wave laser output of a Tm3+∶Gd0.1Y0.9AlO3 disordered crystal [J]. Opt. Laser Technol., 2020, 131: 106421-1-6. doi: 10.1016/j.optlastec.2020.106421http://dx.doi.org/10.1016/j.optlastec.2020.106421
谭慧瑜, 张沛雄, 牛晓晨, 等. 可见光激光晶体Sm3+∶CaDyAlO4的光学性能 [J]. 发光学报, 2022, 43(11): 1741-1749. doi: 10.37188/cjl.20220164http://dx.doi.org/10.37188/cjl.20220164
TAN H Y, ZHANG P X, NIU X C, et al. Optical properties of visible laser crystal Sm3+∶CaDyAlO4 [J]. Chin. J. Lumin., 2022, 43(11): 1741-1749. (in Chinese). doi: 10.37188/cjl.20220164http://dx.doi.org/10.37188/cjl.20220164
XIA W S, ZHAO X B, YUE L, et al. Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys: a review [J]. J. Alloys Compd., 2020, 819: 152954-1-17. doi: 10.1016/j.jallcom.2019.152954http://dx.doi.org/10.1016/j.jallcom.2019.152954
CHEN Q D, CHEN Y, ZHANG P X, et al. Crystal growth, spectra properties, and 2-μm laser performance of a novel “mixed” Tm3+-doped CaY0.65Gd0.35AlO4 crystal [J]. J. Alloys Compd., 2022, 928: 167174. doi: 10.1016/j.jallcom.2022.167174http://dx.doi.org/10.1016/j.jallcom.2022.167174
WU G D, YIN X Q, FAN M D, et al. Nd-doped structurally disordered YSr3(PO4)3 single crystal: growth and laser performances [J]. J. Rare Earths, 2021, 39(12): 1540-1546. doi: 10.1016/j.jre.2021.05.019http://dx.doi.org/10.1016/j.jre.2021.05.019
于浩海, 潘忠奔, 张怀金, 等. 无序激光晶体及其超快激光研究进展 [J]. 人工晶体学报, 2021, 50(4): 648-668. doi: 10.3969/j.issn.1000-985X.2021.04.009http://dx.doi.org/10.3969/j.issn.1000-985X.2021.04.009
YU H H, PAN Z B, ZHANG H J, et al. Development of disordered laser crystals and their ultrafast lasers [J]. J. Synth. Cryst., 2021, 50(4): 648-668. (in Chinese). doi: 10.3969/j.issn.1000-985X.2021.04.009http://dx.doi.org/10.3969/j.issn.1000-985X.2021.04.009
宋振, 刘泉林. 正多面体中的晶体场劈裂 [J]. 发光学报, 2022, 43(9): 1428-1435. doi: 10.37188/CJL.20220190http://dx.doi.org/10.37188/CJL.20220190
SONG Z, LIU Q L. Crystal-field splitting in regular polyhedron [J]. Chin. J. Lumin., 2022, 43(9): 1428-1435. (in English). doi: 10.37188/CJL.20220190http://dx.doi.org/10.37188/CJL.20220190
ZHOU H Q, ZHU S Q, LI Z, et al. Investigation on 1.0 and 1.3 µm laser performance of Nd3+∶GYAP crystal [J]. Opt. Laser Technol., 2019, 119: 105601-1-5. doi: 10.1016/j.optlastec.2019.105601http://dx.doi.org/10.1016/j.optlastec.2019.105601
WANG Y H, CHEN Q D, ZHANG P X, et al. Fabrication of Sb2O3 by an improved chemical reaction assisted vertical micro sublimation method and its saturable absorber performance [J]. Opt. Mater. Express, 2022, 12(4): 1337-1346. doi: 10.1364/ome.442732http://dx.doi.org/10.1364/ome.442732
HONG H, CHEN Q D, WANG Y H, et al. An effective 2D saturable absorber In2O3 to realize passively Q-switched laser output [J]. Opt. Laser Technol., 2022, 155: 108375. doi: 10.1016/j.optlastec.2022.108375http://dx.doi.org/10.1016/j.optlastec.2022.108375
BAI J T, CHEN G F. Continuous-wave diode-laser end-pumped Nd∶YVO4/KTP high-power solid-state green laser [J]. Opt. Laser Technol., 2002, 34(4): 333-336. doi: 10.1016/s0030-3992(02)00024-5http://dx.doi.org/10.1016/s0030-3992(02)00024-5
ZHUANG F J, ZHENG Y Q, HUANG C H, et al. Efficient and compact intracavity-frequency-doubled YVO4/Nd∶YVO4/KTP laser through analysis of the interaction length [J]. Opt. Commun., 2010, 283(17): 3324-3327. doi: 10.1016/j.optcom.2010.04.061http://dx.doi.org/10.1016/j.optcom.2010.04.061
PAVEL N, SAIKAWA J, TAIRA T. Diode end-pumped passively Q-switched Nd∶YAG laser intra-cavity frequency doubled by LBO crystal [J]. Opt. Commun., 2001, 195(1-4): 233-240. doi: 10.1016/s0030-4018(01)01307-4http://dx.doi.org/10.1016/s0030-4018(01)01307-4
谭慧瑜, 汪瑞, 张沛雄, 等. 钆镱共掺杂铝酸钇晶体的生长及性能研究 [J]. 人工晶体学报, 2021, 50(11): 2013-2018. doi: 10.3969/j.issn.1000-985X.2021.11.002http://dx.doi.org/10.3969/j.issn.1000-985X.2021.11.002
TAN H Y, WANG R, ZHANG P X, et al. Growth and properties of Gd3+/Yb3+ co-doped yttrium aluminate crystals [J]. J. Synth. Cryst., 2021, 50(11): 2013-2018. (in Chinese). doi: 10.3969/j.issn.1000-985X.2021.11.002http://dx.doi.org/10.3969/j.issn.1000-985X.2021.11.002
0
浏览量
157
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构