浏览全部资源
扫码关注微信
1.河北工业大学 材料科学与工程学院, 天津 300401
2.吉林大学电子科学与工程学院 集成光电子学国家重点联合实验室, 吉林 长春 130012
[ "冯印素(1999-),女,河北衡水人,硕士研究生, 2021 年于中北大学获得学士学位,主要从事半导体光伏器件中半透明钙钛矿太阳能电池的开发与研究。 E⁃mail: f18234191175@163.com" ]
[ "陈洪建(1966-),男,河北唐山人,博士,教授,2010年于河北工业大学获得博士学位,主要从事晶体生长及应用研究。E⁃mail: chhj@hebut.edu.cn" ]
[ "宋宏伟(1967-),男,黑龙江阿城人,博士,教授,博士生导师,1996年于中国科学院长春物理研究所获得博士学位,主要从事稀土发光材料物理、光电子及生物应用的研究。E⁃mail: songhw@jlu.edu.cn" ]
[ "陈聪(1990-),男,吉林长春人,博士,教授, 2019年于吉林大学获得博士学位,主要从事高效与长时稳定的钙钛矿太阳能电池的研究。E⁃mail: chencong@hebut.edu.cn" ]
纸质出版日期:2023-09-05,
收稿日期:2023-03-21,
修回日期:2023-04-11,
移动端阅览
冯印素,耿涛然,陈春雷等.半透明钙钛矿太阳能电池的技术关键[J].发光学报,2023,44(09):1650-1666.
FENG Yinsu,GENG Taoran,CHEN Chunlei,et al.Key Technology of Semitransparent Perovskite Solar Cells[J].Chinese Journal of Luminescence,2023,44(09):1650-1666.
冯印素,耿涛然,陈春雷等.半透明钙钛矿太阳能电池的技术关键[J].发光学报,2023,44(09):1650-1666. DOI: 10.37188/CJL.20230068.
FENG Yinsu,GENG Taoran,CHEN Chunlei,et al.Key Technology of Semitransparent Perovskite Solar Cells[J].Chinese Journal of Luminescence,2023,44(09):1650-1666. DOI: 10.37188/CJL.20230068.
基于
ABX
3
晶体结构材料的新型钙钛矿太阳能电池具有光电转换效率高、可溶液加工以及低温工艺兼容等优势。与此同时,利用钙钛矿材料合成方法简单、带隙可调以及膜厚和透过率可控等优点制备的半透明钙钛矿太阳能电池为薄膜光伏的发展带来了新的契机,在建筑集成光伏和叠层光伏等领域应用前景广阔。开发高效且高稳定的半透明钙钛矿太阳能电池已成为目前光伏领域的研究重点。本文系统综述了半透明钙钛矿太阳能电池的各功能层(钙钛矿光活性层、电荷传输层和电极)材料选择、光学特性调控、电学特性优化以及制备工艺调控等技术策略,同时提出了对半透明钙钛矿太阳能电池未来发展的一些展望。
The new perovskite solar cells based on
ABX
3
crystal structure material have the advantages of high photoelectric conversion efficiency, solution processability, and low temperature process compatibility. At the same time, semitransparent perovskite solar cells prepared by using the advantages of simple synthesis methods, adjustable band gap and controllable film thickness and transmittance of perovskite materials have brought new opportunities for the development of thin film photovoltaics. Semitransparent solar cells have broad application prospects in building-integrated photovoltaics and tandem photovoltaics. Developing efficient and highly stable semitransparent perovskite solar cells has become a research focus in the photovoltaic field. This article systematically reviews the technical strategies for selecting functional layer (perovskite photoactive layer, charge transport layer and electrode) materials, regulating optical properties, optimizing electrical properties, and regulating the preparation processes of semitransparent perovskite solar cells. At the same time, some prospects for the future development of semitransparent perovskite solar cells are presented.
半透明建筑光伏一体化叠层钙钛矿太阳能电池
semitransparentbuilding photovoltaic integrationtandemperovskite solar cells
DE WOLF S, HOLOVSKY J, MOON S J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance [J]. J. Phys. Chem. Lett., 2014, 5(6): 1035-1039. doi: 10.1021/jz500279bhttp://dx.doi.org/10.1021/jz500279b
SAVENIJE T J, PONSECA C S JR, KUNNEMAN L, et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite [J]. J. Phys. Chem. Lett., 2014, 5(13): 2189-2194. doi: 10.1021/jz500858ahttp://dx.doi.org/10.1021/jz500858a
STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber [J]. Science, 2013, 342(6156): 341-344. doi: 10.1126/science.1243982http://dx.doi.org/10.1126/science.1243982
KULKARNI S A, BAIKIE T, BOIX P P, et al. Band-gap tuning of lead halide perovskites using a sequential deposition process [J]. J. Mater. Chem. A, 2014, 2(24): 9221-9225. doi: 10.1039/c4ta00435chttp://dx.doi.org/10.1039/c4ta00435c
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. doi: 10.1021/ja809598rhttp://dx.doi.org/10.1021/ja809598r
CANNAVALE A, EPERON G E, COSSARI P, et al. Perovskite photovoltachromic cells for building integration [J]. Energy Environ. Sci., 2015, 8(5): 1578-1584. doi: 10.1039/c5ee00896dhttp://dx.doi.org/10.1039/c5ee00896d
ONO L K, WANG S H, KATO Y, et al. Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method [J]. Energy Environ. Sci., 2014, 7(12): 3989-3993. doi: 10.1039/c4ee02539chttp://dx.doi.org/10.1039/c4ee02539c
HEO J H, HAN H J, LEE M, et al. Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells [J]. Energy Environ. Sci., 2015, 8(10): 2922-2927. doi: 10.1039/c5ee01050khttp://dx.doi.org/10.1039/c5ee01050k
FU F, FEURER T, WEISS T P, et al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration [J]. Nat. Energy, 2016, 2(1): 16190-1-9. doi: 10.1038/nenergy.2016.190http://dx.doi.org/10.1038/nenergy.2016.190
DUONG T, WU Y L, SHEN H P, et al. Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency [J]. Adv. Energy Mater., 2017, 7(14): 1700228-1-11. doi: 10.1002/aenm.201700228http://dx.doi.org/10.1002/aenm.201700228
RAMÍREZ QUIROZ C O, SHEN Y, SALVADOR M, et al. Balancing electrical and optical losses for efficient 4-terminal Si⁃perovskite solar cells with solution processed percolation electrodes [J]. J. Mater. Chem. A, 2018, 6(8): 3583-3592. doi: 10.1039/c7ta10945hhttp://dx.doi.org/10.1039/c7ta10945h
MANEKKATHODI A, CHEN B, KIM J, et al. Solution-processed perovskite-colloidal quantum dot tandem solar cells for photon collection beyond 1 000 nm [J]. J. Mater. Chem. A, 2019, 7(45): 26020-26028. doi: 10.1039/c9ta11462ahttp://dx.doi.org/10.1039/c9ta11462a
CHEN B, BAEK S W, HOU Y, et al. Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems [J]. Nat. Commun., 2020, 11(1): 1257-1-9. doi: 10.1038/s41467-020-15077-3http://dx.doi.org/10.1038/s41467-020-15077-3
YING Z Q, YANG X, ZHENG J M, et al. Charge-transfer induced multifunctional BCP∶Ag complexes for semi-transparent perovskite solar cells with a record fill factor of 80.1% [J]. J. Mater. Chem. A, 2021, 9(20): 12009-12018. doi: 10.1039/d1ta01180dhttp://dx.doi.org/10.1039/d1ta01180d
JEONG M J, LEE J H, YOU C H, et al. Oxide/halide/oxide architecture for high performance semi-transparent perovskite solar cells [J]. Adv. Energy Mater., 2022, 12(31): 2200661-1-11. doi: 10.1002/aenm.202200661http://dx.doi.org/10.1002/aenm.202200661
LI H, CHEN C, JIN J J, et al. Near-infrared and ultraviolet to visible photon conversion for full spectrum response perovskite solar cells [J]. Nano Energy, 2018, 50: 699-709. doi: 10.1016/j.nanoen.2018.06.024http://dx.doi.org/10.1016/j.nanoen.2018.06.024
LIU Z K, YANG Z H, YANG W C, et al. Optical management for back-contact perovskite solar cells with diverse structure designs [J]. Solar Energy, 2022, 236: 100-106. doi: 10.1016/j.solener.2022.03.002http://dx.doi.org/10.1016/j.solener.2022.03.002
XIAO L G, HUANG G S, ZHANG H, et al. Light managements and transparent electrodes for semitransparent organic and perovskite solar cells [J]. Solar RRL, 2022, 6(4): 2100818-1-24. doi: 10.1002/solr.202100818http://dx.doi.org/10.1002/solr.202100818
JUNG J W, CHUEH C C, JEN A K Y. High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material [J]. Adv. Energy Mater., 2015, 5(17): 1500486-1-7. doi: 10.1002/aenm.201500486http://dx.doi.org/10.1002/aenm.201500486
TAI Q D, YAN F. Emerging semitransparent solar cells: materials and device design [J]. Adv. Mater., 2017, 29(34): 1700192-1-37. doi: 10.1002/adma.201700192http://dx.doi.org/10.1002/adma.201700192
MESCHER J, KETTLITZ S W, CHRIST N, et al. Design rules for semi-transparent organic tandem solar cells for window integration [J]. Org. Electron., 2014, 15(7): 1476-1480. doi: 10.1016/j.orgel.2014.04.011http://dx.doi.org/10.1016/j.orgel.2014.04.011
XU G Y, SHEN L, CUI C H, et al. High-performance colorful semitransparent polymer solar cells with ultrathin hybrid-metal electrodes and fine-tuned dielectric mirrors [J]. Adv. Funct. Mater., 2017, 27(15): 1605908-1-10. doi: 10.1002/adfm.201605908http://dx.doi.org/10.1002/adfm.201605908
TRAVERSE C J, PANDEY R, BARR M C, et al. Emergence of highly transparent photovoltaics for distributed applications [J]. Nat. Energy, 2017, 2(11): 849-860. doi: 10.1038/s41560-017-0016-9http://dx.doi.org/10.1038/s41560-017-0016-9
KIM K, NAM S K, CHO J, et al. Photon upconversion-assisted dual-band luminescence solar concentrators coupled with perovskite solar cells for highly efficient semi-transparent photovoltaic systems [J]. Nanoscale, 2020, 12(23): 12426-12431. doi: 10.1039/d0nr02106ghttp://dx.doi.org/10.1039/d0nr02106g
KIM G M, TATSUMA T. Photocurrent enhancement of perovskite solar cells at the absorption edge by electrode-coupled plasmons of silver nanocubes [J]. J. Phys. Chem. C, 2017, 121(21): 11693-11699. doi: 10.1021/acs.jpcc.7b02799http://dx.doi.org/10.1021/acs.jpcc.7b02799
LIE S, BRUNO A, WONG L H, et al. Semitransparent perovskite solar cells with > 13% efficiency and 27% transperancy using plasmonic Au nanorods [J]. ACS Appl. Mater. Interfaces, 2022, 14(9): 11339-11349. doi: 10.1021/acsami.1c22748http://dx.doi.org/10.1021/acsami.1c22748
ROLDÁN-CARMONA C, MALINKIEWICZ O, BETANCUR R, et al. High efficiency single-junction semitransparent perovskite solar cells [J]. Energy Environ. Sci., 2014, 7(9): 2968-2973. doi: 10.1039/c4ee01389ahttp://dx.doi.org/10.1039/c4ee01389a
SHI B, LIU B F, LUO J S, et al. Enhanced light absorption of thin perovskite solar cells using textured substrates [J]. Solar Energy Mater. Solar Cells, 2017, 168: 214-220. doi: 10.1016/j.solmat.2017.04.038http://dx.doi.org/10.1016/j.solmat.2017.04.038
XIAO Z W, ZHOU Y Y, HOSONO H, et al. Bandgap optimization of perovskite semiconductors for photovoltaic applications [J]. Chem. Eur. J., 2018, 24(10): 2305-2316. doi: 10.1002/chem.201705031http://dx.doi.org/10.1002/chem.201705031
GIULIANO G, BONASERA A, ARRABITO G, et al. Semitransparent perovskite solar cells for building integration and tandem photovoltaics: design strategies and challenges [J]. Solar RRL, 2021, 5(12): 2100702-1-38. doi: 10.1002/solr.202100702http://dx.doi.org/10.1002/solr.202100702
EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells [J]. Energy Environ. Sci., 2014, 7(3): 982-988. doi: 10.1039/c3ee43822hhttp://dx.doi.org/10.1039/c3ee43822h
TONG J H., SONG Z N., KIM D H, et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells [J]. Science, 2019, 364(6439): 475-479. doi: 10.1126/science.aav7911http://dx.doi.org/10.1126/science.aav7911
SALIBA M, MATSUI T, SEO J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency [J]. Energy Environ. Sci., 2016, 9(6): 1989-1997. doi: 10.1039/c5ee03874jhttp://dx.doi.org/10.1039/c5ee03874j
ZUO F, WILLIAMS S T, LIANG P W, et al. Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells [J]. Adv. Mater., 2014, 26(37): 6454-6460. doi: 10.1002/adma.201401641http://dx.doi.org/10.1002/adma.201401641
LINDBLAD R, JENA N K, PHILIPPE B, et al. Electronic structure of CH3NH3PbX3 perovskites: dependence on the halide moiety [J]. J. Phys. Chem. C, 2015, 119(4): 1818-1825. doi: 10.1021/jp509460hhttp://dx.doi.org/10.1021/jp509460h
WALSH A. Principles of chemical bonding and band gap engineering in hybrid organic-inorganic halide perovskites [J]. J. Phys. Chem. C, 2015, 119(11): 5755-5760. doi: 10.1021/jp512420bhttp://dx.doi.org/10.1021/jp512420b
NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells [J]. Nano Lett., 2013, 13(4): 1764-1769. doi: 10.1021/nl400349bhttp://dx.doi.org/10.1021/nl400349b
YANG Z B, CHUEH C C, LIANG P W, et al. Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells [J]. Nano Energy, 2016, 22: 328-337. doi: 10.1016/j.nanoen.2016.02.033http://dx.doi.org/10.1016/j.nanoen.2016.02.033
SLOTCAVAGE D J, KARUNADASA H I, MCGEHEE M D. Light-induced phase segregation in halide-perovskite absorbers [J]. ACS Energy Lett., 2016, 1(6): 1199-1205. doi: 10.1021/acsenergylett.6b00495http://dx.doi.org/10.1021/acsenergylett.6b00495
MATTEOCCI F, ROSSI D, CASTRIOTTA L A, et al. Wide bandgap halide perovskite absorbers for semi-transparent photovoltaics: from theoretical design to modules [J]. Nano Energy, 2022, 101: 107560-1-10. doi: 10.1016/j.nanoen.2022.107560http://dx.doi.org/10.1016/j.nanoen.2022.107560
SUTANTO A A, DRIGO N, QUELOZ V I E, et al. Dynamical evolution of the 2D/3D interface: a hidden driver behind perovskite solar cell instability [J]. J. Mater. Chem. A, 2020, 8(5): 2343-2348. doi: 10.1039/c9ta12489fhttp://dx.doi.org/10.1039/c9ta12489f
PONCHAI J, KAEWURAI P, BOONTHUM C, et al. Modifying morphology and defects of low-dimensional, semi-transparent perovskite thin films via solvent type [J]. RSC Adv., 2019, 9(21): 12047-12054. doi: 10.1039/c9ra00971jhttp://dx.doi.org/10.1039/c9ra00971j
RAMÍREZ QUIROZ C O, LEVCHUK I, BRONNBAUER C, et al. Pushing efficiency limits for semitransparent perovskite solar cells [J]. J. Mater. Chem. A, 2015, 3(47): 24071-24081. doi: 10.1039/c5ta08450dhttp://dx.doi.org/10.1039/c5ta08450d
KIM G M, TATSUMA T. Semitransparent solar cells with ultrasmooth and low-scattering perovskite thin films [J]. J. Phys. Chem. C, 2016, 120(51): 28933-28938. doi: 10.1021/acs.jpcc.6b09671http://dx.doi.org/10.1021/acs.jpcc.6b09671
BAG S, DURSTOCK M F. Efficient semi-transparent planar perovskite solar cells using a ‘molecular glue’ [J]. Nano Energy, 2016, 30: 542-548. doi: 10.1016/j.nanoen.2016.10.044http://dx.doi.org/10.1016/j.nanoen.2016.10.044
GUO Y L, SHOYAMA K, SATO W, et al. Polymer stabilization of lead(II) perovskite cubic nanocrystals for semitransparent solar cells [J]. Adv. Energy Mater., 2016, 6(6): 1502317-1-9. doi: 10.1002/aenm.201502317http://dx.doi.org/10.1002/aenm.201502317
CHEN W J, ZHANG J W, XU G Y, et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency [J]. Adv. Mater., 2018, 30(21): 1800855-1-10. doi: 10.1002/adma.201800855http://dx.doi.org/10.1002/adma.201800855
YOU P, LIU Z K, TAI Q D, et al. Efficient semitransparent perovskite solar cells with graphene electrodes [J]. Adv. Mater., 2015, 27(24): 3632-3638. doi: 10.1002/adma.201501145http://dx.doi.org/10.1002/adma.201501145
EPERON G E, BURLAKOV V M, GORIELY A, et al. Neutral color semitransparent microstructured perovskite solar cells [J]. ACS Nano, 2014, 8(1): 591-598. doi: 10.1021/nn4052309http://dx.doi.org/10.1021/nn4052309
CHEN S, CHEN B X, GAO X, et al. Neutral-colored semitransparent solar cells based on pseudohalide (SCN-)-doped perovskite [J]. Sustain. Energy Fuels, 2017, 1(5): 1034-1040. doi: 10.1039/c7se00122chttp://dx.doi.org/10.1039/c7se00122c
HÖRANTNER M T, NAYAK P K, MUKHOPADHYAY S, et al. Shunt-blocking layers for semitransparent perovskite solar cells [J]. Adv. Mater. Interf., 2016, 3(10): 1500837-1-7. doi: 10.1002/admi.201500837http://dx.doi.org/10.1002/admi.201500837
HÖRANTNER M T, ZHANG W, SALIBA M, et al. Templated microstructural growth of perovskite thin films via colloidal monolayer lithography [J]. Energy Environ. Sci., 2015, 8(7): 2041-2047. doi: 10.1039/c5ee01169hhttp://dx.doi.org/10.1039/c5ee01169h
ZHANG L J, HÖRANTNER M T, ZHANG W, et al. Near-neutral-colored semitransparent perovskite films using a combination of colloidal self-assembly and plasma etching [J]. Solar Energy Mater. Solar Cells, 2017, 160: 193-202. doi: 10.1016/j.solmat.2016.10.035http://dx.doi.org/10.1016/j.solmat.2016.10.035
AHARON S, LAYANI M, COHEN BEL, et al. Self-assembly of perovskite for fabrication of semitransparent perovskite solar cells [J]. Adv. Mater. Interf., 2015, 2(12): 1500118-1-6. doi: 10.1002/admi.201500118http://dx.doi.org/10.1002/admi.201500118
RAI M, RAHMANY S, LIM S S, et al. Hot dipping post treatment for improved efficiency in micro patterned semi-transparent perovskite solar cells [J]. J. Mater. Chem. A, 2018, 6(46): 23787-23796. doi: 10.1039/c8ta09340ghttp://dx.doi.org/10.1039/c8ta09340g
KWON H C, YANG W, LEE D, et al. Investigating recombination and charge carrier dynamics in a one-dimensional nanopillared perovskite absorber [J]. ACS Nano, 2018, 12(5): 4233-4245. doi: 10.1021/acsnano.7b07559http://dx.doi.org/10.1021/acsnano.7b07559
KWON H C, KIM A, LEE H, et al. Parallelized nanopillar perovskites for semitransparent solar cells using an anodized aluminum oxide scaffold [J]. Adv. Energy Mater., 2016, 6(20): 1601055-1-11. doi: 10.1002/aenm.201601055http://dx.doi.org/10.1002/aenm.201601055
KIM G M, TATSUMA T. Semi-transparent perovskite solar cells developed by considering human luminosity function [J]. Sci. Rep., 2017, 7(1): 10699-1-7. doi: 10.1038/s41598-017-11193-1http://dx.doi.org/10.1038/s41598-017-11193-1
DOKKHAN C, MOKHTAR M Z, KE C R, et al. Modulating crystallization in semitransparent perovskite films using submicrometer spongelike polymer colloid particles to improve solar cell performance [J]. ACS Appl. Energy Mater., 2019, 2(9): 6624-6633. doi: 10.1021/acsaem.9b01162http://dx.doi.org/10.1021/acsaem.9b01162
YU Y, SHANG M J, WANG T, et al. All-round performance improvement of semitransparent perovskite solar cells by a pressure-assisted method [J]. J. Mater. Chem. C, 2021, 9(42): 15056-15064. doi: 10.1039/d1tc04067ghttp://dx.doi.org/10.1039/d1tc04067g
CHANG C Y, LEE K T, HUANG W K, et al. High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition [J]. Chem. Mater., 2015, 27(14): 5122-5130. doi: 10.1021/acs.chemmater.5b01933http://dx.doi.org/10.1021/acs.chemmater.5b01933
LI Z, KULKARNI S A, BOIX P P, et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells [J]. ACS Nano, 2014, 8(7): 6797-6804. doi: 10.1021/nn501096hhttp://dx.doi.org/10.1021/nn501096h
BU L L, LIU Z H, ZHANG M, et al. Semitransparent fully air processed perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2015, 7(32): 17776-17781. doi: 10.1021/acsami.5b04040http://dx.doi.org/10.1021/acsami.5b04040
SUN J S, ZHANG N J, WU J R, et al. Additive engineering of the CuSCN hole transport layer for high-performance perovskite semitransparent solar cells [J]. ACS Appl. Mater. Interfaces, 2022, 14(46): 52223-52232. doi: 10.1021/acsami.2c18120http://dx.doi.org/10.1021/acsami.2c18120
ZOU W J, SHAN L T, CAO W C, et al. Precrystallized-heterojunction strategy on precursor solution enables high-performance semitransparent perovskite solar cells [J]. Adv. Opt. Mater., 2023, 11(12): 2202982. doi: 10.1002/adom.202202982http://dx.doi.org/10.1002/adom.202202982
SHI B, DUAN L R, ZHAO Y, et al. Semitransparent perovskite solar cells: from materials and devices to applications [J]. Adv. Mater., 2020, 32(3): 1806474-1-12. doi: 10.1002/adma.201806474http://dx.doi.org/10.1002/adma.201806474
LI C, SLEPPY J, DHASMANA N, et al. A PCBM-assisted perovskite growth process to fabricate high efficiency semitransparent solar cells [J]. J. Mater. Chem. A, 2016, 4(30): 11648-11655. doi: 10.1039/c6ta04790dhttp://dx.doi.org/10.1039/c6ta04790d
XUE Q F, BAI Y, LIU M Y, et al. Dual interfacial modifications enable high performance semitransparent perovskite solar cells with large open circuit voltage and fill factor [J]. Adv. Energy Mater., 2017, 7(9): 1602333-1-9. doi: 10.1002/aenm.201602333http://dx.doi.org/10.1002/aenm.201602333
HAN K, XIE M L, ZHANG L P, et al. Fully solution processed semi-transparent perovskite solar cells with spray-coated silver nanowires/ZnO composite top electrode [J]. Solar Energy Mater. Solar Cells, 2018, 185: 399-405. doi: 10.1016/j.solmat.2018.05.048http://dx.doi.org/10.1016/j.solmat.2018.05.048
BAILIE C D, CHRISTOFORO M G, MAILOA J P, et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS [J]. Energy Environ. Sci., 2015, 8(3): 956-963. doi: 10.1039/c4ee03322ahttp://dx.doi.org/10.1039/c4ee03322a
LANG F, GLUBA M A, ALBRECHT S, et al. Perovskite solar cells with large-area CVD-graphene for tandem solar cells [J]. J. Phys. Chem. Lett., 2015, 6(14): 2745-2750. doi: 10.1021/acs.jpclett.5b01177http://dx.doi.org/10.1021/acs.jpclett.5b01177
MORALES-MASIS M, DE WOLF S, WOODS-ROBINSON R, et al. Transparent electrodes for efficient optoelectronics [J]. Adv. Electron. Mater., 2017, 3(5): 1600529-1-17. doi: 10.1002/aelm.201600529http://dx.doi.org/10.1002/aelm.201600529
FU F, FEURER T, JÄGER T, et al. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications [J]. Nat. Commun., 2015, 6: 8932-1-9. doi: 10.1038/ncomms9932http://dx.doi.org/10.1038/ncomms9932
ALBRECHT S, SALIBA M, CORREA BAENA J P, et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature [J]. Energy Environ. Sci., 2016, 9(1): 81-88. doi: 10.1039/c5ee02965ahttp://dx.doi.org/10.1039/c5ee02965a
WERNER J, GEISSBÜHLER J, DABIRIAN A, et al. Parasitic absorption reduction in metal oxide-based transparent electrodes: application in perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2016, 8(27): 17260-17267. doi: 10.1021/acsami.6b04425http://dx.doi.org/10.1021/acsami.6b04425
NOH Y J, KIM J G, KIM S S, et al. Efficient semi-transparent perovskite solar cells with a novel indium zinc tin oxide top electrode grown by linear facing target sputtering [J]. J. Power Sources, 2019, 437: 226894-1-5. doi: 10.1016/j.jpowsour.2019.226894http://dx.doi.org/10.1016/j.jpowsour.2019.226894
LIM S H, SEOK H J, KWAK M J, et al. Semi-transparent perovskite solar cells with bidirectional transparent electrodes [J]. Nano Energy, 2021, 82: 105703-1-5. doi: 10.1016/j.nanoen.2020.105703http://dx.doi.org/10.1016/j.nanoen.2020.105703
BID A, BORA A, RAYCHAUDHURI A K. Temperature dependence of the resistance of metallic nanowires of diameter ⩾15 nm: applicability of Bloch-Grüneisen theorem [J]. Phys. Rev. B, 2006, 74(3): 035426-1-8. doi: 10.1103/physrevb.74.079903http://dx.doi.org/10.1103/physrevb.74.079903
FANG Y S, WU Z C, LI J, et al. High-performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics [J]. Adv. Funct. Mater., 2018, 28(9): 1705409-1-8. doi: 10.1002/adfm.201705409http://dx.doi.org/10.1002/adfm.201705409
GUO F, AZIMI H, HOU Y, et al. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes [J]. Nanoscale, 2015, 7(5): 1642-1649. doi: 10.1039/c4nr06033dhttp://dx.doi.org/10.1039/c4nr06033d
XIE M L, LU H, ZHANG L P, et al. Fully solution-processed semi-transparent perovskite solar cells with ink-jet printed silver nanowires top electrode [J]. Solar RRL, 2018, 2(2): 1700184-1-10. doi: 10.1002/solr.201700184http://dx.doi.org/10.1002/solr.201700184
LI F R, XU Y, CHEN W, et al. Nanotube enhanced carbon grids as top electrodes for fully printable mesoscopic semitransparent perovskite solar cells [J]. J. Mater. Chem. A, 2017, 5(21): 10374-10379. doi: 10.1039/c7ta01383chttp://dx.doi.org/10.1039/c7ta01383c
BOUVILLE F, MAIRE E, MEILLE S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents [J]. Nat. Mater., 2014, 13(5): 508-514. doi: 10.1038/nmat3915http://dx.doi.org/10.1038/nmat3915
ZHANG Y B, SMALL J P, PONTIUS W V, et al. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices [J]. Appl. Phys. Lett., 2005, 86(7): 073104-1-3. doi: 10.1063/1.1862334http://dx.doi.org/10.1063/1.1862334
EIZENBERG M, BLAKELY J M. Carbon monolayer phase condensation on Ni(111) [J]. Surf. Sci., 1979, 82(1): 228-236. doi: 10.1016/0039-6028(79)90330-3http://dx.doi.org/10.1016/0039-6028(79)90330-3
YUN J. Ultrathin metal films for transparent electrodes of flexible optoelectronic devices [J]. Adv. Funct. Mater., 2017, 27(18): 1606641-1-21. doi: 10.1002/adfm.201606641http://dx.doi.org/10.1002/adfm.201606641
YING Z Q, CHEN W, LIN Y, et al. Supersmooth Ta2O5/Ag/polyetherimide film as the rear transparent electrode for high performance semitransparent perovskite solar cells [J]. Adv. Opt. Mater., 2019, 7(4): 1801409-1-8. doi: 10.1002/adom.201801409http://dx.doi.org/10.1002/adom.201801409
LEE H J, CHO S P, NA S I, et al. Thin metal top electrode and interface engineering for efficient and air-stable semitransparent perovskite solar cells [J]. J. Alloys Compd., 2019, 797: 65-73. doi: 10.1016/j.jallcom.2019.05.051http://dx.doi.org/10.1016/j.jallcom.2019.05.051
ZHAO J, BRINKMANN K O, HU T, et al. Self-encapsulating thermostable and air-resilient semitransparent perovskite solar cells [J]. Adv. Energy Mater., 2017, 7(14): 1602599-1-8. doi: 10.1002/aenm.201602599http://dx.doi.org/10.1002/aenm.201602599
DELLA GASPERA E, PENG Y, HOU Q C, et al. Ultra-thin high efficiency semitransparent perovskite solar cells [J]. Nano Energy, 2015, 13: 249-257. doi: 10.1016/j.nanoen.2015.02.028http://dx.doi.org/10.1016/j.nanoen.2015.02.028
KOH T M, WANG H, NG Y F, et al. Halide perovskite solar cells for building integrated photovoltaics: transforming building façades into power generators [J]. Adv. Mater., 2022, 34(25): 2104661-1-39. doi: 10.1002/adma.202104661http://dx.doi.org/10.1002/adma.202104661
XIA Y, LIANG X, JIANG Y, et al. High-efficiency and reliable smart photovoltaic windows enabled by multiresponsive liquid crystal composite films and semi-transparent perovskite solar cells [J]. Adv. Energy Mater., 2019, 9(33): 1900720-1-8. doi: 10.1002/aenm.201900720http://dx.doi.org/10.1002/aenm.201900720
WHEELER L M, MOORE D T, IHLY R, et al. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide [J]. Nat. Commun., 2017, 8(1): 1722-1-9. doi: 10.1038/s41467-017-01842-4http://dx.doi.org/10.1038/s41467-017-01842-4
CANNAVALE A, HÖRANTNER M, EPERON G E, et al. Building integration of semitransparent perovskite-based solar cells: energy performance and visual comfort assessment [J]. Appl. Energy, 2017, 194: 94-107. doi: 10.1016/j.apenergy.2017.03.011http://dx.doi.org/10.1016/j.apenergy.2017.03.011
LEIJTENS T, BUSH K A, PRASANNA R, et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors [J]. Nat. Energy, 2018, 3(10): 828-838. doi: 10.1038/s41560-018-0190-4http://dx.doi.org/10.1038/s41560-018-0190-4
SAHLI F, WERNER J, KAMINO B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency [J]. Nat. Mater., 2018, 17(9): 820-826. doi: 10.1038/s41563-018-0115-4http://dx.doi.org/10.1038/s41563-018-0115-4
HEO J H, IM S H. CH3NH3PbBr3-CH3NH3PbI3 perovskite-perovskite tandem solar cells with exceeding 2.2 V open circuit voltage [J]. Adv. Mater., 2016, 28(25): 5121-5125. doi: 10.1002/adma.201501629http://dx.doi.org/10.1002/adma.201501629
LIN R X, XIAO K, QIN Z Y, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink [J]. Nat. Energy, 2019, 4(10): 864-873. doi: 10.1038/s41560-019-0466-3http://dx.doi.org/10.1038/s41560-019-0466-3
0
浏览量
302
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构