浏览全部资源
扫码关注微信
华南理工大学 发光材料与器件国家重点实验室, 广东 广州 510641
[ "谢光耀(1998-),男,江西抚州人,硕士研究生, 2020年于东北大学获得学士学位,主要从事钙钛矿发光显示器件的研究。E⁃mail: 1650969936@qq.com" ]
[ "彭俊彪 (1962-),男,山东宁津人,博士,教授,1993年于中国科学院长春物理研究所获得博士学位,主要从事发光显示器件与物理的研究。 E:mail: psjbpeng@scut.edu.cn" ]
纸质出版日期:2023-08-05,
收稿日期:2023-03-13,
修回日期:2023-04-03,
扫 描 看 全 文
谢光耀,王俊杰,毛雨等.锗合金准二维钙钛矿发光二极管[J].发光学报,2023,44(08):1451-1462.
XIE Guangyao,WANG Junjie,MAO Yu,et al.Ge-alloyed Quasi-two-dimensional Perovskite Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(08):1451-1462.
谢光耀,王俊杰,毛雨等.锗合金准二维钙钛矿发光二极管[J].发光学报,2023,44(08):1451-1462. DOI: 10.37188/CJL.20230062.
XIE Guangyao,WANG Junjie,MAO Yu,et al.Ge-alloyed Quasi-two-dimensional Perovskite Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(08):1451-1462. DOI: 10.37188/CJL.20230062.
钙钛矿由于其出色的光电特性,在显示和照明领域具有潜在的应用价值。为降低重金属Pb含量,本文采用锗离子(Ge
2+
)部分取代Pb
2+
进行合金化,并探索提高其电致发光性能的途径。由于Ge合金化可以使钙钛矿容忍因子更趋近于1,有望提高器件的发光稳定性。结果表明,Ge合金钙钛矿薄膜的光致发光性能在一定水氧条件下可以得到较大幅度提高,器件发光稳定性也同时得到提升。这主要归因于水氧共同作用使合金钙钛矿表面形成了GeO
2
,一定程度上钝化了钙钛矿薄膜表面缺陷,阻止了水氧的进一步渗透。得到的绿光PeLED器件最大外量子效率(EQE
max
)为11.8%,亮度为8×10
3
cd/m
2
,较非合金化器件的发光寿命延长了3倍,在100 cd/m
2
初始亮度下稳定性
T
50
从~2 h提升至~6 h,这是目前文献报道Ge合金钙钛矿发光二极管最长的发光寿命。
Due to its excellent photoelectric characteristics and solution processability, perovskite has made unprecedented radical progress in the fields of display and lighting. In this paper, in order to reduce the content of Pb ion, we proposed to introduce germanium ions (Ge
2+
) into the perovskite lattice and realize partial substitution of Pb
2+
, then we explored ways to improve the performance. Because Ge alloying can make perovskite tolerance factor closer to 1, it is expected that device stability can be improved. The experimental results showed that the photoluminescence stability of Ge-alloyed perovskite films is greatly improved in a certain time under water and oxygen environment, and the PeLED device performance and operation stability are improved, which is mainly attributed to GeO
2
formed on the surface of alloyed perovskite after the water and oxygen treatment. As a result, a green-light Ge-alloyed perovskite light-emitting diode was obtained with a maximum external quantum efficiency (EQE
max
) of 11.8%, maximum luminance of 8×10
3
cd/m
2
. What's more, the device's lifetime was extended three times by germanium alloying, and the
T
50
of the device was improved from ~2 h to ~6 h with an initial brightness of 100 cd/m
2
, which is the longest luminous life of Ge-alloyed PeLEDs.
锗合金钙钛矿水氧处理发光二极管发光稳定性
Ge-alloyed perovskitewater and oxygen treatmentlight-emitting diodeluminous stability
STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection [J]. Cryst. Growth Des., 2013, 13(7): 2722-2727. doi: 10.1021/cg400645thttp://dx.doi.org/10.1021/cg400645t
XIAO Z G, KERNER R A, ZHAO L F, et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites [J]. Nat. Photonics, 2017, 11(2): 108-115. doi: 10.1038/nphoton.2016.269http://dx.doi.org/10.1038/nphoton.2016.269
BYUN J, CHO H, WOLF C, et al. Efficient visible quasi-2D perovskite light-emitting diodes [J]. Adv. Mater., 2016, 28(34): 7515-7520. doi: 10.1002/adma.201601369http://dx.doi.org/10.1002/adma.201601369
YUAN M J, QUAN L N, COMIN R, et al. Perovskite energy funnels for efficient light-emitting diodes [J]. Nat. Nanotechnol., 2016, 11(10): 872-877. doi: 10.1038/nnano.2016.110http://dx.doi.org/10.1038/nnano.2016.110
ADJOKATSE S, FANG H H, LOI M A. Broadly tunable metal halide perovskites for solid-state light-emission applications [J]. Mater. Today, 2017, 20(8): 413-424. doi: 10.1016/j.mattod.2017.03.021http://dx.doi.org/10.1016/j.mattod.2017.03.021
CHIBA T, HAYASHI Y, EBE H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices [J]. Nat. Photonics, 2018, 12(11): 681-687. doi: 10.1038/s41566-018-0260-yhttp://dx.doi.org/10.1038/s41566-018-0260-y
KIM Y H, KIM S, KAKEKHANI A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes [J]. Nat. Photonics, 2021, 15(2): 148-155. doi: 10.1038/s41566-020-00732-4http://dx.doi.org/10.1038/s41566-020-00732-4
XU W D, HU Q, BAI S, et al. Rational molecular passivation for high-performance perovskite light-emitting diodes [J]. Nat. Photonics, 2019, 13(6): 418-424. doi: 10.1038/s41566-019-0390-xhttp://dx.doi.org/10.1038/s41566-019-0390-x
DONG Y T, WANG Y K, YUAN F L, et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots [J]. Nat. Nanotechnol., 2020, 15(8): 668-674. doi: 10.1038/s41565-020-0714-5http://dx.doi.org/10.1038/s41565-020-0714-5
LIU X K, XU W D, BAI S, et al. Metal halide perovskites for light-emitting diodes [J]. Nat. Mater., 2021, 20(1): 10-21. doi: 10.1038/s41563-020-0784-7http://dx.doi.org/10.1038/s41563-020-0784-7
ZHU T, YANG Y R, GONG X. Recent advancements and challenges for low-toxicity perovskite materials [J]. ACS Appl. Mater. Interfaces, 2020, 12(24): 26776-26811. doi: 10.1021/acsami.0c02575http://dx.doi.org/10.1021/acsami.0c02575
KE W J, KANATZIDIS M G. Prospects for low-toxicity lead-free perovskite solar cells [J]. Nat. Commun., 2019, 10(1): 965-1-4. doi: 10.1038/s41467-019-08918-3http://dx.doi.org/10.1038/s41467-019-08918-3
QUAN L N, MA D X, ZHAO Y B, et al. Edge stabilization in reduced-dimensional perovskites [J]. Nat. Commun., 2020, 11(1): 170-1-9. doi: 10.1038/s41467-019-13944-2http://dx.doi.org/10.1038/s41467-019-13944-2
YU H Q, CHEN W J, FANG Z B, et al. Alkalis-doping of mixed tin-lead perovskites for efficient near-infrared light-emitting diodes [J]. Sci. Bull., 2022, 67(1): 54-60. doi: 10.1016/j.scib.2021.07.021http://dx.doi.org/10.1016/j.scib.2021.07.021
WANG Z B, WANG F Z, ZHAO B, et al. Efficient two-dimensional tin halide perovskite light-emitting diodes via a spacer cation substitution strategy [J]. J. Phys. Chem. Lett., 2020, 11(3): 1120-1127. doi: 10.1021/acs.jpclett.9b03565http://dx.doi.org/10.1021/acs.jpclett.9b03565
CAI R, QU X W, LIU H C, et al. Perovskite light-emitting diodes based on FAPb1-xSnxBr3 nanocrystals synthesized at room temperature [J]. IEEE Trans. Nanotechnol., 2019, 18: 1050-1056. doi: 10.1109/tnano.2019.2923048http://dx.doi.org/10.1109/tnano.2019.2923048
SUN S Q, LU M, GUO J, et al. ZnBr2 mediated transformation from nonluminescent Cs4PbBr6 to green-emitting Zn-doped CsPbBr3/Cs4PbBr6 nanocrystals for electroluminescent light-emitting diodes [J]. Chem. Eng. J., 2022, 433: 133556-1-7. doi: 10.1016/j.cej.2021.133556http://dx.doi.org/10.1016/j.cej.2021.133556
肖毅, 李丹阳, 罗宇, 等. 共掺Rb+和Zn2+蓝光钙钛矿量子点及其发光二极管 [J]. 发光学报, 2022, 43(6): 901-910. doi: 10.37188/cjl.20220097http://dx.doi.org/10.37188/cjl.20220097
XIAO Y, LI D Y, LUO Y, et al. Blue perovskite quantum dot co-doped with Rb+/Zn2+ and its light emitting diodes [J]. Chin. J. Lumin., 2022, 43(6): 901-910. (in Chinese). doi: 10.37188/cjl.20220097http://dx.doi.org/10.37188/cjl.20220097
HAO F, TAN H R, JIN Z W, et al. Toward stable and efficient Sn-containing perovskite solar cells [J]. Sci. Bull., 2020, 65(10): 786-790. doi: 10.1016/j.scib.2020.02.028http://dx.doi.org/10.1016/j.scib.2020.02.028
CHIARA R, MORANA M, MALAVASI L. Germanium-based halide perovskites: materials, properties, and applications [J]. ChemPlusChem, 2021, 86(6): 879-888. doi: 10.1002/cplu.202100191http://dx.doi.org/10.1002/cplu.202100191
RAO M, ZHU Y H, ZHANG Z Y, et al. Strain coupling and Jahn-Teller effect in efficient and stable sky-blue germanium⁃lead perovskites [J]. J. Mater. Chem. C, 2022, 10(17): 6827-6836. doi: 10.1039/d2tc00152ghttp://dx.doi.org/10.1039/d2tc00152g
MENG F Y, LIU X Y, CAI X Y, et al. Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes via FABr-modified multi-cation hot-injection method [J]. Nanoscale, 2019, 11(3): 1295-1303. doi: 10.1039/c8nr07907bhttp://dx.doi.org/10.1039/c8nr07907b
CHEN M, JU M G, GARCES H F, et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation [J]. Nat. Commun., 2019, 10(1): 16-1-8. doi: 10.1038/s41467-018-07951-yhttp://dx.doi.org/10.1038/s41467-018-07951-y
SUN P P, LI Q S, YANG L N, et al. Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb2+ with Ge2+ [J]. Nanoscale, 2016, 8(3): 1503-1512. doi: 10.1039/c5nr05337dhttp://dx.doi.org/10.1039/c5nr05337d
YANG D X, ZHANG G L, LAI R C, et al. Germanium-lead perovskite light-emitting diodes [J]. Nat. Commun., 2021, 12(1): 4295-1-7. doi: 10.1038/s41467-021-24616-5http://dx.doi.org/10.1038/s41467-021-24616-5
GUO Z Y, ZHANG Y, WANG B Z, et al. Promoting energy transfer via manipulation of crystallization kinetics of quasi-2D perovskites for efficient green light-emitting diodes [J]. Adv. Mater., 2021, 33(40): 2102246-1-10. doi: 10.1002/adma.202102246http://dx.doi.org/10.1002/adma.202102246
SUN C J, JIANG Y Z, CUI M H, et al. High-performance large-area quasi-2D perovskite light-emitting diodes [J]. Nat. Commun., 2021, 12(1): 2207-1-11. doi: 10.1038/s41467-021-22529-xhttp://dx.doi.org/10.1038/s41467-021-22529-x
MENG F Q, YU B C, ZHANG Q H, et al. Ge incorporation to stabilize efficient inorganic CsPbI3 perovskite solar cells [J]. Adv. Energy Mater., 2022, 12(10): 2103690-1-9. doi: 10.1002/aenm.202103690http://dx.doi.org/10.1002/aenm.202103690
王吉坤, 何蔼平. 现代锗冶金 [M]. 北京: 冶金工业出版社, 2005.
WANG J K, HE A P. Modern Germanium Metallurgy [M]. Beijing: Metallurgical Industry Press, 2005. (in Chinese)
LIU M N, PASANEN H, ALI-LÖYTTY H, et al. B-site co-alloying with germanium improves the efficiency and stability of all-inorganic tin-based perovskite nanocrystal solar cells [J]. Angew. Chem. Int. Ed., 2020, 59(49): 22117-22125. doi: 10.1002/anie.202008724http://dx.doi.org/10.1002/anie.202008724
李海华. 基于界面修饰的钙钛矿发光二极管研究 [D]. 广州: 华南理工大学, 2021.
LI H H. Study of Perovskite Light-emitting Diodes Based on Interface Modification [D]. Guangzhou: South China University of Technology, 2021. (in Chinese)
TIAN S, ZOU C, LAI R C, et al. Additive and interfacial control for efficient perovskite light-emitting diodes with reduced trap densities [J]. J. Semicond., 2022, 43(5): 050502-1-5. doi: 10.1088/1674-4926/43/5/050502http://dx.doi.org/10.1088/1674-4926/43/5/050502
SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals [J]. Science, 2015, 347(6221): 519-522. doi: 10.1126/science.aaa2725http://dx.doi.org/10.1126/science.aaa2725
0
浏览量
67
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构