浏览全部资源
扫码关注微信
1.中国计量大学 计量测试工程学院, 浙江 杭州 310020
2.北京大学 电子学院, 北京 100871
3.中国科学院苏州纳米技术与纳米仿生研究所 器件部, 江苏 苏州 215125
4.太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024
[ "刘依婷(1997-),女,吉林省吉林市人,硕士研究生,2019年于中国计量大学获得学士学位,主要从事碳基神经形态器件的研究。E-mail: ytliu0520@163.com" ]
[ "邱晨光(1989-),男,陕西渭南人,博士,研究员,2016年于北京大学获得博士学位,主要从事碳基电子学、拟态神经电子器件与系统集成、陡峭亚阈值摆幅超低功耗器件方面的研究。 E-mail: chenguangqiu@pku.edu.cn" ]
[ "赵建文(1976-),男,湖南衡阳人,博士,研究员,博士生导师,2008年于中国科学院理化技术研究所获得博士学位,主要从事碳基纳米功能薄膜可控制备和应用的研究。E-mail: jwzhao2011@sinano. ac. cn" ]
纸质出版日期:2023-06-05,
收稿日期:2023-03-06,
修回日期:2023-03-23,
移动端阅览
刘依婷,万军,邱晨光等.基于低维材料的神经形态器件研究进展[J].发光学报,2023,44(06):1085-1111.
LIU Yiting,WAN Jun,QIU Chenguang,et al.Research Progress of Neuromorphic Devices Based on Low-dimensional Materials[J].Chinese Journal of Luminescence,2023,44(06):1085-1111.
刘依婷,万军,邱晨光等.基于低维材料的神经形态器件研究进展[J].发光学报,2023,44(06):1085-1111. DOI: 10.37188/CJL.20230051.
LIU Yiting,WAN Jun,QIU Chenguang,et al.Research Progress of Neuromorphic Devices Based on Low-dimensional Materials[J].Chinese Journal of Luminescence,2023,44(06):1085-1111. DOI: 10.37188/CJL.20230051.
大数据和物联网时代的到来使得传统冯·诺依曼架构的计算机在数据处理过程中面临极大的挑战,存算分离的架构从根本上限制着计算机的计算速度和能效,迫切地需要开发一种新的计算范式来应对当前面临的问题和挑战。近年来,神经形态计算以高度的并行处理、极低功耗和存算一体的特征受到广泛关注。其中,具有独特物理机制的新型神经形态器件是构建神经形态芯片的基本底层单元。在构建神经形态器件的众多候选电子材料中,低维材料相比传统三维材料具有优异的物理特性和电学特性,并且弱的层间范德华力使其易于堆叠,有利于异质整合集成。本文详述了基于低维材料的人工突触器件和人工神经元器件的研究进展,总结了不同类型神经形态器件的工作机制、性能指标和技术优势。在此基础上,介绍了低维材料的神经形态器件在视觉、听觉、运动控制和规模集成芯片等领域的应用,并对神经形态器件未来发展趋势进行了展望。
The arrival of the era of big data and the Internet of Things makes the traditional Von Neumann architecture computer face great challenges in the process of data processing. The architecture of storage and computing separation fundamentally limits the computing speed and energy efficiency of the computer. It is urgent to develop a new computing paradigm to overcome the current challenges. Neuromorphic computing has attracted wide attention because of its high parallelism, low power consumption and integrated storage, and the novel neuromorphic devices with unique physical mechanisms are the basic units of neuromorphic computing systems. Among many candidate materials, low-dimensional materials have unique physical and electrical properties. Weak interlayer Van der Waals forces enable them to be arbitrarily stacked, which is conducive to heterogeneous integration. In this paper, the research progress of artificial synaptic devices and artificial neural devices based on low-dimensional materials is reviewed. The working mechanisms, performance indicators and technical advantages of different types of neuromorphic devices are summarized. On this basis, the applications of neuromorphic devices based on low-dimensional materials in the fields of vision, hearing, motion control and large-scale integration are introduced. Finally, the future development of artificial neuromorphic devices is analyzed and prospected.
低维材料人工突触器件人工神经元器件神经形态芯片
low dimensional materialsartificial synaptic devicesartificial neural devicesneuromorphic chips
张玲, 刘国柱, 于宗光. 人工神经形态器件发展现状与展望 [J]. 电子与封装, 2021, 21(6): 060101-1-14. doi: 10.16257/j.cnki.1681-1070.2021.0601http://dx.doi.org/10.16257/j.cnki.1681-1070.2021.0601
ZHANG L, LIU G Z, YU Z G. Recent advances in neuromorphic devices [J]. Electron. Packag., 2021, 21(6): 060101-1-14. (in Chinese). doi: 10.16257/j.cnki.1681-1070.2021.0601http://dx.doi.org/10.16257/j.cnki.1681-1070.2021.0601
ZHONG H, SUN Q C, LI G, et al. High-performance synaptic transistors for neuromorphic computing [J]. Chin. Phys. B, 2020, 29(4): 040703-1-15. doi: 10.1088/1674-1056/ab7806http://dx.doi.org/10.1088/1674-1056/ab7806
MEROLLA P A, ARTHUR J V, ALVAREZ-ICAZA R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface [J]. Science, 2014, 345(6197): 668-673. doi: 10.1126/science.1254642http://dx.doi.org/10.1126/science.1254642
XU R J, JANG H, LEE M H, et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV [J]. Nano Lett., 2019, 19(4): 2411-2417. doi: 10.1021/acs.nanolett.8b05140http://dx.doi.org/10.1021/acs.nanolett.8b05140
MENG J L, WANG T Y, CHEN L, et al. Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application [J]. Nano Energy, 2021, 83: 105815. doi: 10.1016/j.nanoen.2021.105815http://dx.doi.org/10.1016/j.nanoen.2021.105815
VU Q A, SHIN Y S, KIM Y R, et al. Two-terminal floating-gate memory with van der waals heterostructures for ultrahigh on/off ratio [J]. Nat. Commun., 2016, 7: 12725-1-8. doi: 10.1038/ncomms12725http://dx.doi.org/10.1038/ncomms12725
WANG H, LU W H, HOU S H, et al. A 2D-SnSe film with ferroelectricity and its bio-realistic synapse application [J]. Nanoscale, 2020, 12(42): 21913-21922. doi: 10.1039/d0nr03724ahttp://dx.doi.org/10.1039/d0nr03724a
SI M W, LIAO P Y, QIU G, et al. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure [J]. ACS Nano, 2018, 12(7): 6700-6705. doi: 10.1021/acsnano.8b01810http://dx.doi.org/10.1021/acsnano.8b01810
WANG Y R, HUANG W H, ZHANG Z W, et al. Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory [J]. Nanoscale, 2021, 13(26): 11360-11369. doi: 10.1039/d1nr02099dhttp://dx.doi.org/10.1039/d1nr02099d
HAO S, JI X L, ZHONG S, et al. A monolayer leaky integrate-and-fire neuron for 2D memristive neuromorphic networks [J]. Adv. Electron. Mater., 2020, 6(4): 1901335-1-8. doi: 10.1002/aelm.201901335http://dx.doi.org/10.1002/aelm.201901335
HUO J L, YIN H X, ZHANG Y D, et al. Quasi-volatile MoS2 barristor memory for 1T compact neuron by correlative charges trapping and Schottky barrier modulation [J]. ACS Appl. Mater. Interfaces, 2022, 14(51): 57440-57448. doi: 10.1021/acsami.2c18561http://dx.doi.org/10.1021/acsami.2c18561
VOGLIS G, TAVERNARAKIS N. The role of synaptic ion channels in synaptic plasticity [J]. EMBO Rep., 2006, 7(11): 1104-1110. doi: 10.1038/sj.embor.7400830http://dx.doi.org/10.1038/sj.embor.7400830
ZHANG Z R, YANG D L, LI H H, et al. 2D materials and van der Waals heterojunctions for neuromorphic computing [J]. Neuromorph. Comput. Eng., 2022, 2(3): 032004. doi: 10.1088/2634-4386/ac8a6ahttp://dx.doi.org/10.1088/2634-4386/ac8a6a
ZAMARREÑO-RAMOS C, CAMUÑAS-MESA L A, PÉREZ-CARRASCO J A, et al. On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex [J]. Front. Neurosci., 2011, 5: 26-1-22. doi: 10.3389/fnins.2011.00026http://dx.doi.org/10.3389/fnins.2011.00026
韩晓艳, 赵东. 基于粒子群的支持向量机图像识别 [J]. 液晶与显示, 2017, 32(1): 69-75. doi: 10.3788/yjyxs20173201.0069http://dx.doi.org/10.3788/yjyxs20173201.0069
HAN X Y, ZHAO D. Support vector machine image recognition based on particle swarm [J]. Chin. J. Liq. Cryst. Disp., 2017, 32(1): 69-75. (in Chinese). doi: 10.3788/yjyxs20173201.0069http://dx.doi.org/10.3788/yjyxs20173201.0069
贠卫国, 史其琦, 王民. 基于深度卷积神经网络的多特征融合的手势识别 [J]. 液晶与显示, 2019, 34(4): 417-422. doi: 10.3788/yjyxs20193404.0417http://dx.doi.org/10.3788/yjyxs20193404.0417
YUN W G, SHI Q Q, WANG M. Multi-feature fusion gesture recognition based on deep convolutional neural network [J]. Chin. J. Liq. Cryst. Disp., 2019, 34(4): 417-422. (in Chinese). doi: 10.3788/yjyxs20193404.0417http://dx.doi.org/10.3788/yjyxs20193404.0417
陈彦彤, 陈伟楠, 张献中, 等. 基于深度卷积神经网络的蝇类面部识别 [J]. 光学 精密工程, 2020, 28(7): 1558-1567. doi: 10.37188/OPE.20202807.1558http://dx.doi.org/10.37188/OPE.20202807.1558
CHEN Y T, CHEN W N, ZHANG X Z, et al. Fly facial recognition based on deep convolutional neural networks [J]. Opt. Precision Eng., 2020, 28(7): 1558-1567. (in Chinese). doi: 10.37188/OPE.20202807.1558http://dx.doi.org/10.37188/OPE.20202807.1558
李迪, 陈向坚, 续志军, 等. 自组织递归区间二型模糊神经网络在动态时变系统辨识中的应用 [J]. 光学 精密工程, 2011, 19(6): 1406-1413. doi: 10.3788/ope.20111906.1406http://dx.doi.org/10.3788/ope.20111906.1406
LI D, CHEN X J, XU Z J, et al. Type-Ⅱ fuzzy neural networks with self-organizing recurrent intervals for dynamic time-varying system identification [J]. Opt. Precision Eng., 2011, 19(6): 1406-1413. (in Chinese). doi: 10.3788/ope.20111906.1406http://dx.doi.org/10.3788/ope.20111906.1406
黄伟明, 文尚胜, 夏云云. 基于BP神经网络的LED可靠性模型研究 [J]. 发光学报, 2015, 36(8): 962-968. doi: 10.3788/fgxb20153608.0962http://dx.doi.org/10.3788/fgxb20153608.0962
HUANG W M, WEN S S, XIA Y Y. Reliability model of LEDs based on artificial neural network [J]. Chin. J. Lumin., 2015, 36(8): 962-968. (in Chinese). doi: 10.3788/fgxb20153608.0962http://dx.doi.org/10.3788/fgxb20153608.0962
SEO S, LEE J J, LEE H J, et al. Recent progress in artificial synapses based on two-dimensional van der Waals materials for brain-inspired computing [J]. ACS Appl. Electron. Mater., 2020, 2(2): 371-388. doi: 10.1021/acsaelm.9b00694http://dx.doi.org/10.1021/acsaelm.9b00694
KIM S, LEE Y, KIM H D, et al. Parallel weight update protocol for a carbon nanotube synaptic transistor array for accelerating neuromorphic computing [J]. Nanoscale, 2020, 12(3): 2040-2046. doi: 10.1039/c9nr08979ahttp://dx.doi.org/10.1039/c9nr08979a
YANG J J, STRUKOV D B, STEWART D R. Memristive devices for computing [J]. Nat. Nanotechnol., 2013, 8(1): 13-24. doi: 10.1038/nnano.2012.240http://dx.doi.org/10.1038/nnano.2012.240
CHUA L. Memristor-The missing circuit element [J]. IEEE Trans. Circuit Theory, 1971, 18(5): 507-519. doi: 10.1109/tct.1971.1083337http://dx.doi.org/10.1109/tct.1971.1083337
STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found [J]. Nature, 2008, 453(7191): 80-83. doi: 10.1038/nature06932http://dx.doi.org/10.1038/nature06932
LI H H, WANG S C, ZHANG X M, et al. Memristive crossbar arrays for storage and computing applications [J]. Adv. Intell. Syst., 2021, 3(9): 2100017-1-26. doi: 10.1002/aisy.202100017http://dx.doi.org/10.1002/aisy.202100017
温娟, 黄鹤鸣, 王哲, 等. 基于离子型忆阻器的神经形态系统: 从材料、器件到芯片 [J]. 科学通报, 2022, 67(11): 1054-1071.
WEN J, HUANG H M, WANG Z, et al. Neuromorphic systems based on ionic memristors: from materials, devices to chips [J]. Chin. Sci. Bull., 2022, 67(11): 1054-1071. (in Chinese)
CAO G, GAO C, WANG J J, et al. Memristor based on two-dimensional titania nanosheets for multi-level storage and information processing [J]. Nano Res., 2022, 15(9): 8419-8427. doi: 10.1007/s12274-022-4437-9http://dx.doi.org/10.1007/s12274-022-4437-9
马晨, 王华, 郝玉英, 等. 一种新型结构的黄光有机电致发光器件 [J]. 光谱学与光谱分析, 2008, 28(7): 1479-1482. doi: 10.3964/j.issn.1000-0593.2008.07.009http://dx.doi.org/10.3964/j.issn.1000-0593.2008.07.009
MA C, WANG H, HAO Y Y, et al. A novel yellow organic light-emitting device [J]. Spectrosc. Spectral Anal., 2008, 28(7): 1479-1482. doi: 10.3964/j.issn.1000-0593.2008.07.009http://dx.doi.org/10.3964/j.issn.1000-0593.2008.07.009
WANG H, WU Y L, XU Y, et al. Vacuum annealing of white-light organic light-emitting devices with polyfluorene copolymer as light-emitting layer [J]. Asian J. Chem., 2014, 26(4): 960-962. doi: 10.14233/ajchem.2014.15731http://dx.doi.org/10.14233/ajchem.2014.15731
TAO P, MIAO Y Q, WANG H, et al. High-performance organic electroluminescence: design from organic light-emitting materials to devices [J]. Chem. Rec., 2019, 19(8): 1531-1561. doi: 10.1002/tcr.201800139http://dx.doi.org/10.1002/tcr.201800139
LEI P X, DUAN H, QIN L, et al. High-performance memristor based on 2D layered BiOI nanosheet for low-power artificial optoelectronic synapses [J]. Adv. Funct. Mater., 2022, 32(25): 2201276. doi: 10.1002/adfm.202201276http://dx.doi.org/10.1002/adfm.202201276
LI S F, PAM M E, LI Y S, et al. Wafer-scale 2D hafnium diselenide based memristor crossbar array for energy-efficient neural network hardware [J]. Adv. Mater., 2022, 34(25): 2103376. doi: 10.1002/adma.202103376http://dx.doi.org/10.1002/adma.202103376
YAN X B, ZHANG L, CHEN H W, et al. Graphene oxide quantum dots based memristors with progressive conduction tuning for artificial synaptic learning [J]. Adv. Funct. Mater., 2018, 28(40): 1803728-1-10. doi: 10.1002/adfm.201803728http://dx.doi.org/10.1002/adfm.201803728
CHEN T, YANG S W, WANG J, et al. Flexible artificial memristive synapse constructed from solution-processed MgO-graphene oxide quantum dot hybrid films [J]. Adv. Electron. Mater., 2021, 7(3): 2000882-1-9. doi: 10.1002/aelm.202000882http://dx.doi.org/10.1002/aelm.202000882
WANG M, CAI S H, PAN C, et al. Robust memristors based on layered two-dimensional materials [J]. Nat. Electron., 2018, 1(2): 130-136. doi: 10.1038/s41928-018-0021-4http://dx.doi.org/10.1038/s41928-018-0021-4
ZHANG X L, CHEN H H, CHENG S Q, et al. Tunable resistive switching in 2D MXene Ti3C2 nanosheets for non-volatile memory and neuromorphic computing [J]. ACS Appl. Mater. Interfaces, 2022, 14(39): 44614-44621. doi: 10.1021/acsami.2c14006http://dx.doi.org/10.1021/acsami.2c14006
WANG C H, HE W, TONG Y, et al. Memristive devices with highly repeatable analog states boosted by graphene quantum dots [J]. Small, 2017, 13(20): 1603435-1-8. doi: 10.1002/smll.201603435http://dx.doi.org/10.1002/smll.201603435
KRISHNAPRASAD A, DEV D, HAN S S, et al. MoS2 synapses with ultra-low variability and their implementation in boolean logic [J]. ACS Nano, 2022, 16(2): 2866-2876. doi: 10.1021/acsnano.1c09904http://dx.doi.org/10.1021/acsnano.1c09904
DEV D, KRISHNAPRASAD A, SHAWKAT M S, et al. 2D MoS2-based threshold switching memristor for artificial neuron [J]. IEEE Electron Device Lett., 2020, 41(6): 936-939. doi: 10.1109/led.2020.2988247http://dx.doi.org/10.1109/led.2020.2988247
YU T, ZHAO Z, JIANG H, et al. A low-power memristor based on 2H-MoTe2 nanosheets with synaptic plasticity and arithmetic functions [J]. Mater. Today Nano, 2022, 19: 100233-1-7. doi: 10.1016/j.mtnano.2022.100233http://dx.doi.org/10.1016/j.mtnano.2022.100233
LI Y S, CHEN S, YU Z G, et al. In-memory computing using memristor arrays with ultrathin 2D PdSeOx/PdSe2 heterostructure [J]. Adv. Mater., 2022, 34(26): 2201488-1-11. doi: 10.1002/adma.202201488http://dx.doi.org/10.1002/adma.202201488
MAO J Y, WU S, DING G L, et al. A van der Waals integrated damage-free memristor based on layered 2D hexagonal boron nitride [J]. Small, 2022, 18(12): 2106253-1-13. doi: 10.1002/smll.202106253http://dx.doi.org/10.1002/smll.202106253
SHAN X, WU Z, XIE Y, et al. Centimetre-scale single crystal alpha-MoO3: oxygen assisted self-standing growth and low-energy consumption synaptic devices [J]. Nanoscale, 2023, 15(3): 1200-1209. doi: 10.1039/d2nr04530chttp://dx.doi.org/10.1039/d2nr04530c
WANG H, YU T Q, ZHAO J H, et al. Low-power memristors based on layered 2D SnSe/graphene materials [J]. Sci. China Mater., 2021, 64(8): 1989-1996. doi: 10.1007/s40843-020-1586-xhttp://dx.doi.org/10.1007/s40843-020-1586-x
LIU F C, YOU L, SEYLER K L, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes [J]. Nat. Commun., 2016, 7: 12357-1-6. doi: 10.1038/ncomms12357http://dx.doi.org/10.1038/ncomms12357
LI B C, LI S F, WANG H, et al. An electronic synapse based on 2D ferroelectric CuInP2S6 [J]. Adv. Electron. Mater., 2020, 6(12): 2000760-1-7. doi: 10.1002/aelm.202000760http://dx.doi.org/10.1002/aelm.202000760
ZHAO Y, PEI Y F, ZHANG Z C, et al. Memristor based on α-In2Se3 for emulating biological synaptic plasticity and learning behavior [J]. Sci. China Mater., 2022, 65(6): 1631-1638. doi: 10.1007/s40843-021-1925-xhttp://dx.doi.org/10.1007/s40843-021-1925-x
杨倩, 杜世远, 罗榕思. 高性能超薄In-Ga-Zn-O突触晶体管制备 [J]. 发光学报, 2021, 42(2): 250-256. doi: 10.37188/CJL.20200296http://dx.doi.org/10.37188/CJL.20200296
YANG Q, DU S Y, LUO R S. Preparation of high performance metal oxide synaptic transistor with ultra-thin channel layer [J]. Chin. J. Lumin., 2021, 42(2): 250-256. (in Chinese). doi: 10.37188/CJL.20200296http://dx.doi.org/10.37188/CJL.20200296
WANG L, WANG X J, ZHANG Y S, et al. Exploring ferroelectric switching in α-In2Se3 for neuromorphic computing [J]. Adv. Funct. Mater., 2020, 30(45): 2004609-1-9. doi: 10.1002/adfm.202004609http://dx.doi.org/10.1002/adfm.202004609
CHEN Y T, LI D W, REN H H, et al. Highly linear and symmetric synaptic memtransistors based on polarization switching in two-dimensional ferroelectric semiconductors [J]. Small, 2022, 18(45): 2203611. doi: 10.1002/smll.202203611http://dx.doi.org/10.1002/smll.202203611
NI G X, WANG L, GOLDFLAM M D, et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene [J]. Nat. Photon., 2016, 10(4): 244-247. doi: 10.1038/nphoton.2016.45http://dx.doi.org/10.1038/nphoton.2016.45
霍婷婷,张冬冬,施祥蕾,等.基于碳纳米薄膜/砷化镓范德华异质结的高性能自驱动光电探测器研究 [J].中国光学, 2022,15(02):373-386. doi: 10.37188/CO.2021-0149http://dx.doi.org/10.37188/CO.2021-0149
HUO T T, ZHANG D D, SHI X L, et al. High-performance self-powered photodetectors based on the carbon nanomaterial/GaAs vdW heterojunctions [J]. Chin. Opt, 2022,15(02):373-386. (in Chinese). doi: 10.37188/CO.2021-0149http://dx.doi.org/10.37188/CO.2021-0149
FENG Y Q, CHEN X Y, WU Q X, et al. A method for rapid self-calibration of wearable soft strain sensors [J]. IEEE Sensors J., 2021, 21(18): 20943-20950. doi: 10.1109/jsen.2021.3095875http://dx.doi.org/10.1109/jsen.2021.3095875
WANG X, WEI M M, LI X Q, et al. Large-area flexible printed thin-film transistors with semiconducting single-walled carbon nanotubes for NO2 sensors [J]. ACS Appl. Mater. Interfaces, 2020, 12(46): 51797-51807. doi: 10.1021/acsami.0c13824http://dx.doi.org/10.1021/acsami.0c13824
DENG J, LI X Q, LI M, et al. Fabrication and electrical properties of printed three-dimensional integrated carbon nanotube PMOS inverters on flexible substrates [J]. Nanoscale, 2022, 14(12): 4679-4689. doi: 10.1039/d1nr08056chttp://dx.doi.org/10.1039/d1nr08056c
MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: a new direct-gap semiconductor [J]. Phys. Rev. Lett., 2010, 105(13): 136805-1-4. doi: 10.1103/physrevlett.105.136805http://dx.doi.org/10.1103/physrevlett.105.136805
LI L H, SANTOS E J G, XING T, et al. Dielectric screening in atomically thin boron nitride nanosheets [J]. Nano Lett., 2015, 15(1): 218-223. doi: 10.1021/nl503411ahttp://dx.doi.org/10.1021/nl503411a
XU L P, XIONG H, FU Z C, et al. High conductance margin for efficient neuromorphic computing enabled by stacking nonvolatile van der Waals transistors [J]. Phys. Rev. Appl., 2021, 16(4): 044049. doi: 10.1103/physrevapplied.16.044049http://dx.doi.org/10.1103/physrevapplied.16.044049
CAO Y Y, MENG J L, LI Q X, et al. An efficient training methodology of hardware neural network based on wafer-scale MoS2 synaptic array [J]. Adv. Electron. Mater., 2022, 8(12): 2200909-1-8. doi: 10.1002/aelm.202200909http://dx.doi.org/10.1002/aelm.202200909
JIN T Y, ZHENG Y, GAO J, et al. Controlling native oxidation of HfS2 for 2D materials based flash memory and artificial synapse [J]. ACS Appl. Mater. Interfaces, 2021, 13(8): 10639-10649. doi: 10.1021/acsami.0c22561http://dx.doi.org/10.1021/acsami.0c22561
LI X K, YANG Y C, CHEN G, et al. Design and simulation of a novel multi-floating-gate synaptic nanowire transistor for neuromorphic computing [C]. Proceedings of the 14th IEEE International Conference on Solid⁃state and Integrated Circuit Technology, Qingdao, China, 2018: 867-869. doi: 10.1109/icsict.2018.8565016http://dx.doi.org/10.1109/icsict.2018.8565016
SON D, KOO J H, SONG J K, et al. Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics [J]. ACS Nano, 2015, 9(5): 5585-5593. doi: 10.1021/acsnano.5b01848http://dx.doi.org/10.1021/acsnano.5b01848
KIM S, CHOI B, LIM M, et al. Pattern recognition using carbon nanotube synaptic transistors with an adjustable weight update protocol [J]. ACS Nano, 2017, 11(3): 2814-2822. doi: 10.1021/acsnano.6b07894http://dx.doi.org/10.1021/acsnano.6b07894
WANG Y, LV Z Y, CHEN J R, et al. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing [J]. Adv. Mater., 2018, 30(38): 1802883-1-9. doi: 10.1002/adma.201802883http://dx.doi.org/10.1002/adma.201802883
TANG J, HE C L, TANG J S, et al. A reliable all-2D materials artificial synapse for high energy-efficient neuromorphic computing [J]. Adv. Funct. Mater., 2021, 31(27): 2011083-1-9. doi: 10.1002/adfm.202011083http://dx.doi.org/10.1002/adfm.202011083
LIU L, LIU C S, JIANG L L, et al. Ultrafast non-volatile flash memory based on van der Waals heterostructures [J]. Nat. Nanotechnol., 2021, 16(8): 874-881. doi: 10.1038/s41565-021-00921-4http://dx.doi.org/10.1038/s41565-021-00921-4
LIU L W, SUN Y B, HUANG X H, et al. Ultrafast flash memory with large self-rectifying ratio based on atomically thin MoS2-channel transistor [J]. Mater. Futures, 2022, 1(2): 025301-1-10. doi: 10.1088/2752-5724/ac7067http://dx.doi.org/10.1088/2752-5724/ac7067
LIU C S, YAN X, SONG X F, et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications [J]. Nat. Nanotechnol., 2018, 13(5): 404-410. doi: 10.1038/s41565-018-0102-6http://dx.doi.org/10.1038/s41565-018-0102-6
LI J Y, LIU L, CHEN X Z, et al. Symmetric ultrafast writing and erasing speeds in quasi-nonvolatile memory via van der Waals heterostructures [J]. Adv. Mater., 2019, 31(11): 1808035-1-8. doi: 10.1002/adma.201808035http://dx.doi.org/10.1002/adma.201808035
LYU B Z, CHOI Y, JING H Y, et al. 2D MXene-TiO2 core-shell nanosheets as a data-storage medium in memory devices [J]. Adv. Mater., 2020, 32(17): 1907633-1-8. doi: 10.1002/adma.201907633http://dx.doi.org/10.1002/adma.201907633
WANG Y N, ZHENG Y, GAO J, et al. Band-tailored van der Waals heterostructure for multilevel memory and artificial synapse [J]. InfoMat, 2021, 3(8): 917-928. doi: 10.1002/inf2.12230http://dx.doi.org/10.1002/inf2.12230
BU X B, XU H, SHANG D S, et al. Ion-gated transistor: an enabler for sensing and computing integration [J]. Adv. Intell. Syst., 2020, 2(12): 2000156-1-19. doi: 10.1002/aisy.202000156http://dx.doi.org/10.1002/aisy.202000156
KIM K, CHEN C L, TRUONG Q, et al. A carbon nanotube synapse with dynamic logic and learning [J]. Adv. Mater., 2013, 25(12): 1693-1698. doi: 10.1002/adma.201203116http://dx.doi.org/10.1002/adma.201203116
XU W T, MIN S Y, HWANG H, et al. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption [J]. Sci. Adv., 2016, 2(6): e1501326-1-7. doi: 10.1126/sciadv.1501326http://dx.doi.org/10.1126/sciadv.1501326
CHANG Y, CONG H F, ZHOU R F, et al. Enhanced artificial synaptic properties enabled by arrays of electrolyte-gated electrospun InZnO nanowires [J]. ACS Appl. Electron. Mater., 2022, 4(5): 2570-2579. doi: 10.1021/acsaelm.2c00326http://dx.doi.org/10.1021/acsaelm.2c00326
ZHU J D, YANG Y C, JIA R D, et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics [J]. Adv. Mater., 2018, 30(21): 1800195-1-11. doi: 10.1002/adma.201800195http://dx.doi.org/10.1002/adma.201800195
ZHU X J, LI D, LIANG X G, et al. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing [J]. Nat. Mater., 2019, 18(2): 141-148. doi: 10.1038/s41563-018-0248-5http://dx.doi.org/10.1038/s41563-018-0248-5
WANG Y R, YANG Y F, HE Z Y, et al. Laterally coupled 2D MoS2 synaptic transistor with ion gating [J]. IEEE Electron Device Lett., 2020, 41(9): 1424-1427. doi: 10.1109/led.2020.3008728http://dx.doi.org/10.1109/led.2020.3008728
ZHANG L F, LIANG A G, WANG F, et al. High conductivity update linearity MoS2 memtransistors array based on lithium-ion modulation [J]. Adv. Mater. Interfaces, 2022, 9(32): 2201775. doi: 10.1002/admi.202201775http://dx.doi.org/10.1002/admi.202201775
MENG J L, WANG T Y, ZHU H, et al. Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application [J]. Nano Lett., 2022, 22(1): 81-89. doi: 10.1021/acs.nanolett.1c03240http://dx.doi.org/10.1021/acs.nanolett.1c03240
王洋昊, 刘昌, 黄如, 等. 神经形态器件研究进展与未来趋势 [J]. 科学通报, 2020, 65(10): 904-915. doi: 10.1360/tb-2019-0739http://dx.doi.org/10.1360/tb-2019-0739
WANG Y H, LIU C, HUANG R, et al. Progress and outlook in neuromorphic devices [J]. Chin. Sci. Bull., 2020, 65(10): 904-915. (in Chinese). doi: 10.1360/tb-2019-0739http://dx.doi.org/10.1360/tb-2019-0739
LI H X, HU J Y, CHEN A Z, et al. Single-transistor neuron with excitatory-inhibitory spatiotemporal dynamics applied for neuronal oscillations [J]. Adv. Mater., 2022, 34(51): 2207371-1-9. doi: 10.1002/adma.202207371http://dx.doi.org/10.1002/adma.202207371
WAN C J, ZHU L Q, LIU Y H, et al. Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems [J]. Adv. Mater., 2016, 28(18): 3557-3563. doi: 10.1002/adma.201505898http://dx.doi.org/10.1002/adma.201505898
夏风梁, 石凯熙, 赵东旭, 等. 二维WSe2场效应晶体管光电性能 [J]. 发光学报, 2021, 42(2): 257-263. doi: 10.37188/cjl.20200374http://dx.doi.org/10.37188/cjl.20200374
XIA F L, SHI K X, ZHAO D X, et al. Optoelectronic performance of 2D WSe2 field effect transistor [J]. Chin. J. Lumin., 2021, 42(2): 257-263. (in Chinese). doi: 10.37188/cjl.20200374http://dx.doi.org/10.37188/cjl.20200374
SEO S, JO S H, KIM S, et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition [J]. Nat. Commun., 2018, 9(1): 5106-1-8. doi: 10.1038/s41467-018-07572-5http://dx.doi.org/10.1038/s41467-018-07572-5
SUN L F, WANG Z R, JIANG J B, et al. In-sensor reservoir computing for language learning via two-dimensional memristors [J]. Sci. Adv., 2021, 7(20): eabg1455-1-8. doi: 10.1126/sciadv.abg1455http://dx.doi.org/10.1126/sciadv.abg1455
SUN L F, ZHANG Y S, HWANG G, et al. Synaptic computation enabled by joule heating of single-layered semiconductors for sound localization [J]. Nano Lett., 2018, 18(5): 3229-3234. doi: 10.1021/acs.nanolett.8b00994http://dx.doi.org/10.1021/acs.nanolett.8b00994
NI Y, HAN H, LIU J Q, et al. A fibrous neuromorphic device for multi-level nerve pathways implementing knee jerk reflex and cognitive activities [J]. Nano Energy, 2022, 104: 107898-1-10. doi: 10.1016/j.nanoen.2022.107898http://dx.doi.org/10.1016/j.nanoen.2022.107898
ZHU Q B, LI B, YANG D D, et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems [J]. Nat. Commun., 2021, 12(1): 1798-1-7. doi: 10.1038/s41467-021-22047-whttp://dx.doi.org/10.1038/s41467-021-22047-w
CHEN S C, MAHMOODI M R, SHI Y Y, et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks [J]. Nat. Electron., 2020, 3(10): 638-645. doi: 10.1038/s41928-020-00473-whttp://dx.doi.org/10.1038/s41928-020-00473-w
胡涛, 孙雪茹, 金伟民. 基于神经网络的混沌虹膜相位掩模计算全息加密图像恢复 [J]. 光学 精密工程, 2023, 31(3): 417-428. doi: 10.37188/OPE.20233103.0417http://dx.doi.org/10.37188/OPE.20233103.0417
HU T, SUN X R, JIN W M. Neural network-based computational holographic encryption image reconstruction scheme for chaotic iris phase mask [J] Opt. Precision Eng., 2023, 31(3): 417-428. (in Chinese). doi: 10.37188/OPE.20233103.0417http://dx.doi.org/10.37188/OPE.20233103.0417
DODDA A, TRAINOR N, REDWING J M, et al. All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors [J]. Nat. Commun., 2022, 13(1): 3587-1-12. doi: 10.1038/s41467-022-31148-zhttp://dx.doi.org/10.1038/s41467-022-31148-z
MA S L, WU T X, CHEN X Y, et al. An artificial neural network chip based on two-dimensional semiconductor [J]. Sci. Bull., 2022, 67(3): 270-277. doi: 10.1016/j.scib.2021.10.005http://dx.doi.org/10.1016/j.scib.2021.10.005
KUMAR P, ZHU K C, GAO X, et al. Hybrid architecture based on two-dimensional memristor crossbar array and CMOS integrated circuit for edge computing [J]. npj 2D Mater. Appl., 2022, 6(1): 8-1-10. doi: 10.1038/s41699-021-00284-3http://dx.doi.org/10.1038/s41699-021-00284-3
0
浏览量
463
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构