浏览全部资源
扫码关注微信
1.福建师范大学 化学与材料学院, 福建 福州 350117
2.中国科学院 福建物质结构研究所, 中国科学院功能纳米结构设计与组装重点实验室, 福建省纳米材料重点实验室, 福建 福州 350002
3.中国福建光电信息科技与技术创新实验室(闽都创新实验室), 福建 福州 350108
[ "文飞(1996-),男,陕西宝鸡人,硕士研究生,2016年于江西科技师范大学获得学士学位,主要从事稀土无机纳米发光材料的可控合成、发光性能及光学性质等方面的研究。 E-mail: wenfei@fjirsm. ac. cn" ]
[ "涂大涛(1982-),男,湖北武汉人,博士,研究员,博士生导师,2011年于中国科学院福建物质结构研究所获得博士学位,主要从事稀土纳米发光材料的可控合成、光电子学及其生物应用等方面的研究。E-mail: dttu@fjirsm. ac. cn" ]
[ "陈学元(1970-),男,福建建瓯人,博士,研究员,博士生导师,1998年于中国科学院福建物质结构研究所获得博士学位,主要从事无机发光材料的电子结构、发光性能与应用等方面的 研究。 E-mail: xchen@fjirsm.ac.cn" ]
纸质出版日期:2023-07-05,
收稿日期:2023-02-17,
修回日期:2023-03-06,
扫 描 看 全 文
文飞,涂大涛,廉纬等.稀土掺杂无序结构晶体的局域位置对称性与发光调控[J].发光学报,2023,44(07):1202-1219.
WEN Fei,TU Datao,LIAN Wei,et al.Local Site Symmetry and Luminescence Manipulation of Lanthanide Doped Disordered Crystals[J].Chinese Journal of Luminescence,2023,44(07):1202-1219.
文飞,涂大涛,廉纬等.稀土掺杂无序结构晶体的局域位置对称性与发光调控[J].发光学报,2023,44(07):1202-1219. DOI: 10.37188/CJL.20230040.
WEN Fei,TU Datao,LIAN Wei,et al.Local Site Symmetry and Luminescence Manipulation of Lanthanide Doped Disordered Crystals[J].Chinese Journal of Luminescence,2023,44(07):1202-1219. DOI: 10.37188/CJL.20230040.
稀土掺杂的无序结构晶体具有优异的下转移和上转换发光性能,通过对材料的发光调控可使其广泛应用于各种光学和光电子学领域。稀土离子的光学性质与所处的晶体场环境密切相关,因此,使用稀土离子作为灵敏的结构探针,可以确定无序结构发光材料中稀土离子掺杂的局域结构和位置对称性;同时,通过改变稀土离子掺杂的无序结构晶体的局域位置对称性也可以进行一系列发光调控。本文首先介绍了稀土离子掺杂无序结构材料的晶体学格位对称性和光谱学格位对称性;其次,系统总结了通过改变局域结构来调控稀土离子掺杂的下转移/上转换发光的最新成果,包括组分调节和外场调节;最后,深入探讨了稀土掺杂无序结构发光材料面临的挑战和发展前景。
Lanthanide ion (
Ln
3+
)-doped disordered materials exhibit excellent downshifting and upconversion luminescent properties, which can be widely used in a variety of optical and optoelectronic fields through luminescence modulation. The optical properties of
Ln
3+
ions are closely related to the local structure of crystal field. Thus, by using
Ln
3+
as a sensitive structural probe, the local structure and local site symmetry of
Ln
3+
dopants in luminescent materials can be determined. Meanwhile, it is also an effective strategy to optimize the luminescence of
Ln
3+
by modulating the local site symmetry of the
Ln
3+
-doped disordered materials. In this review, we first clarify the crystallographic lattice site symmetry and spectroscopic lattice site symmetry of
Ln
3+
-doped disordered crystals. Then, we systematically summarize the latest achievements of downshifting/upconversion luminescence manipulation by changing the microstructures around
Ln
3+
dopants, including internal composition and external field regulation. Finally, the challenges and prospects of
Ln
3+
-doped disordered luminescent materials are discussed in detail.
无序结构晶体发光材料局域位置对称性稀土掺杂发光调控
disordered crystalsluminescent materialslocal site symmetrylanthanide dopingluminescence manipulation
ZHANG Y H, HUANG L, LIU X G. Unraveling epitaxial habits in the NaLnF4 system for color multiplexing at the single-particle level [J]. Angew. Chem. Int. Ed., 2016, 55(19): 5718-5722. doi: 10.1002/anie.201511626http://dx.doi.org/10.1002/anie.201511626
ZHANG Y H, ZHANG L X, DENG R R, et al. Multicolor barcoding in a single upconversion crystal [J]. J. Am. Chem. Soc., 2014, 136(13): 4893-4896. doi: 10.1021/ja5013646http://dx.doi.org/10.1021/ja5013646
WANG F, DENG R R, LIU X G. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes [J]. Nat. Protoc., 2014, 9(7): 1634-1644. doi: 10.1038/nprot.2014.111http://dx.doi.org/10.1038/nprot.2014.111
贾恒, 冯晓锐, 李大光, 等. 正交激发发射上转换纳米材料的设计、制备与应用 [J]. 中国光学(中英文), 2023, 16(1): 76-93. doi: 10.37188/co.2022-0134http://dx.doi.org/10.37188/co.2022-0134
JIA H, FENG X R, LI D G, et al. Design, preparation and application of orthogonal excitation-emission upconversion nanomaterials [J]. Chin. Opt., 2023, 16(1): 76-93. (in Chinese). doi: 10.37188/co.2022-0134http://dx.doi.org/10.37188/co.2022-0134
DING Y L, LI Z H. Tuning the photoluminescence properties of β-NaYF4∶Yb, Er by Bi3+ doping strategy [J]. Cryst. Res. Technol., 2022, 57(4): 2100162-1-5. doi: 10.1002/crat.202100162http://dx.doi.org/10.1002/crat.202100162
WANG G J, HUANG Y S, ZHANG L Z, et al. Growth, structure, and optical properties of the Cr3+∶K0.6(Mg0.3Sc0.7)2⁃(MoO4)3 crystal [J]. Cryst. Growth Des., 2011, 11(9): 3895-3899. doi: 10.1021/cg200438phttp://dx.doi.org/10.1021/cg200438p
RENERO-LECUNA C, MARTÍN-RODRÍGUEZ R, VALIENTE R, et al. Origin of the high upconversion green luminescence efficiency in β-NaYF4∶2%Er3+, 20%Yb3+ [J]. Chem. Mater., 2011, 23(15): 3442-3448. doi: 10.1021/cm2004227http://dx.doi.org/10.1021/cm2004227
孟宪福, 刘艳颜, 步文博. 用于医学磁共振影像的稀土上转换发光纳米材料 [J]. 发光学报, 2018, 39(1): 69-91. doi: 10.3788/fgxb20183901.0069http://dx.doi.org/10.3788/fgxb20183901.0069
MENG X F, LIU Y Y, BU W B. Rare-earth upconversion nanomaterials for medical magnetic resonance imaging [J]. Chin. J. Lumin., 2018, 39(1): 69-91. (in Chinese). doi: 10.3788/fgxb20183901.0069http://dx.doi.org/10.3788/fgxb20183901.0069
XU L N, ZHENG H Y, PANG T, et al. Multicolor luminescence of hexagonal NaYF4∶Yb3+/Ho3+/Ce3+ microcrystals with tunable morphology under 940 nm excitation for temperature-responsive anti-counterfeiting [J]. J. Rare Earths, 2022, 40(3): 406-414. doi: 10.1016/j.jre.2021.01.017http://dx.doi.org/10.1016/j.jre.2021.01.017
ZHANG G D, DANG P P, LIAN H Z, et al. Tailoring the highly efficient upconversion luminescence of all-inorganic Er3+-based halide double perovskites by introducing various energy trapping centers [J]. Adv. Opt. Mater., 2022, 10(20): 2201220. doi: 10.1002/adom.202201220http://dx.doi.org/10.1002/adom.202201220
DONG H, DU S R, ZHENG X Y, et al. Lanthanide nanoparticles: from design toward bioimaging and therapy [J]. Chem. Rev., 2015, 115(19): 10725-10815. doi: 10.1021/acs.chemrev.5b00091http://dx.doi.org/10.1021/acs.chemrev.5b00091
缪菊红, 谢颖, 陈铭源, 等. NaYF4∶Yb3+/Er3+/Tm3+纳米晶的温度传感特性研究 [J]. 中国稀土学报, 2022, 40(4): 602-608.
MIAO J H, XIE Y, CHEN M Y, et al. Temperature sensing performance of NaYF4∶Yb3+/Er3+/Tm3+ nano-crystals [J]. J. Chin. Soc. Rare Earths, 2022, 40(4): 602-608. (in Chinese)
JI Y N, XU W, DING N, et al. Huge upconversion luminescence enhancement by a cascade optical field modulation strategy facilitating selective multispectral narrow-band near-infrared photodetection [J]. Light⁃Sci. Appl., 2020, 9(1): 184. doi: 10.1038/s41377-020-00418-0http://dx.doi.org/10.1038/s41377-020-00418-0
XIANG H Y, HU Z L, BILLOT L, et al. Heavy-metal-free flexible hybrid polymer-nanocrystal photodetectors sensitive to 1.5 μm wavelength [J]. ACS Appl. Mater. Interfaces, 2019, 11(45): 42571-42579. doi: 10.1021/acsami.9b14034http://dx.doi.org/10.1021/acsami.9b14034
DENH Z M, BI S H, JIANG M Y, et al. Endogenous H2S-activated orthogonal second near-infrared emissive nanoprobe for in situ ratiometric fluorescence imaging of metformin-induced liver injury [J]. ACS Nano, 2021, 15(2): 3201-3211. doi: 10.1021/acsnano.0c09799http://dx.doi.org/10.1021/acsnano.0c09799
ZHANG X W, ZHAO Z, ZHANG X, et al. Magnetic and optical properties of NaGdF4∶Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window [J]. Nano Res., 2015, 8(2): 636-648. doi: 10.1007/s12274-014-0548-2http://dx.doi.org/10.1007/s12274-014-0548-2
HUANG P, TU D T, ZHENG W, et al. Inorganic lanthanide nanoprobes for background-free luminescent bioassays [J]. Sci. China Mater., 2015, 58(2): 156-177. doi: 10.1007/s40843-015-0019-4http://dx.doi.org/10.1007/s40843-015-0019-4
SHAH S A A, SAYYAD M H, SUN J H, et al. Recent advances and emerging trends of rare-earth-ion doped spectral conversion nanomaterials in perovskite solar cells [J]. J. Rare Earths, 2022, 40(11): 1651-1667. doi: 10.1016/j.jre.2021.12.001http://dx.doi.org/10.1016/j.jre.2021.12.001
董国亚, 赵翔, 张燕, 等. 便携式上转换荧光试纸条检测仪的研制 [J]. 光学 精密工程, 2017, 25(3): 584-590. doi: 10.3788/ope.20172503.0584http://dx.doi.org/10.3788/ope.20172503.0584
DONG G Y, ZHAO X, ZHANG Y, et al. Development of portable up-conversion photoluminescence strip detector [J]. Opt. Precision Eng., 2017, 25(3): 584-590. (in Chinese). doi: 10.3788/ope.20172503.0584http://dx.doi.org/10.3788/ope.20172503.0584
SONG X R, LI S H, GUO H H, et al. Graphene-oxide-modified lanthanide nanoprobes for tumor-targeted visible/NIR-Ⅱluminescence imaging [J]. Angew. Chem. Int. Ed., 2019, 58(52): 18981-18986. doi: 10.1002/anie.201909416http://dx.doi.org/10.1002/anie.201909416
LIU Y S, LUO W Q, ZHU H M, et al. Optical spectroscopy of lanthanides doped in wide band-gap semiconductor nanocrystals [J]. J. Lumin., 2011, 131(3): 415-422. doi: 10.1016/j.jlumin.2010.07.018http://dx.doi.org/10.1016/j.jlumin.2010.07.018
LUO W Q, LIU Y S, CHEN X Y. Lanthanide-doped semiconductor nanocrystals: electronic structures and optical properties [J]. Sci. China Mater., 2015, 58(10): 819-850. doi: 10.1007/s40843-015-0091-9http://dx.doi.org/10.1007/s40843-015-0091-9
HOSTETTLER M, HAUSER J, et al. Structural and spectroscopic characterization of active sites in a family of light-emitting sodium lanthanide tetrafluorides [J]. Angew. Chem. Int. Ed., 2006, 45(17): 2802-2806. doi: 10.1002/anie.200503966http://dx.doi.org/10.1002/anie.200503966
BINNEMANS K. Interpretation of europium(Ⅲ) spectra [J]. Coord. Chem. Rev., 2015, 295: 1-45. doi: 10.1016/j.ccr.2015.02.015http://dx.doi.org/10.1016/j.ccr.2015.02.015
YAN C H, SUN L D, LIAO C S, et al. Eu3+ ion as fluorescent probe for detecting the surface effect in nanocrystals [J]. Appl. Phys. Lett., 2003, 82(20): 3511-3513. doi: 10.1063/1.1575504http://dx.doi.org/10.1063/1.1575504
JU Q, TU D T, LIU Y S, et al. Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes [J]. J. Am. Chem. Soc., 2012, 134(2): 1323-1330. doi: 10.1021/ja2102604http://dx.doi.org/10.1021/ja2102604
ZAKARIA D, FOURNIER M T, MAHIOU R, et al. On Eu3+ luminescence in the hexagonal NaYF4 phase [J]. J. Alloys Compd., 1992, 188: 250-254. doi: 10.1016/0925-8388(92)90687-5http://dx.doi.org/10.1016/0925-8388(92)90687-5
TU D T, LIU Y S, ZHU H M, et al. Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals [J]. Angew. Chem. Int. Ed., 2013, 52(4): 1128-1133. doi: 10.1002/anie.201208218http://dx.doi.org/10.1002/anie.201208218
付虎辉, 刘永升, 洪茂椿. 局域结构依赖的稀土上转换发光 [J]. 中国稀土学报, 2021, 39(1): 24-34.
FU H H, LIU Y S, HONG M C. Local-structure-dependent upconversion luminescence in lanthanide-doped nanocrystals [J]. J. Chin. Soc. Rare Earths, 2021, 39(1): 24-34. (in Chinese)
KARBOWIAK M, CICHOS J, RUDOWICZ C. Spectroscopic determination of site symmetry and space group in lanthanide-doped crystals: resolving intricate symmetry aspects for β-NaLnF4 [J]. Polyhedron, 2016, 105: 42-48. doi: 10.1016/j.poly.2015.11.044http://dx.doi.org/10.1016/j.poly.2015.11.044
YANG M, YOU H P, JIA Y C, et al. Synthesis and luminescent properties of NaLa(MoO4)2∶Eu3+ shuttle-like nanorods composed of nanoparticles [J]. CrystEngComm, 2011, 13(12): 4046-4052. doi: 10.1039/c0ce00822bhttp://dx.doi.org/10.1039/c0ce00822b
LI L L, LIU L, ZI W W, et al. Synthesis and luminescent properties of high brightness MLa(WO4)2∶Eu3+ (M=Li, Na, K) and NaRE(WO4)2∶Eu3+ (RE=Gd, Y, Lu) red phosphors [J]. J. Lumin., 2013, 143: 14-20. doi: 10.1016/j.jlumin.2013.04.031http://dx.doi.org/10.1016/j.jlumin.2013.04.031
WISSER M D, FISCHER S, MAURER P C, et al. Enhancing quantum yield via local symmetry distortion in lanthanide-based upconverting nanoparticles [J]. ACS Photonics, 2016, 3(8): 1523-1530. doi: 10.1021/acsphotonics.6b00166http://dx.doi.org/10.1021/acsphotonics.6b00166
林少伟, 赵婧, 法信蒙, 等. 808 nm激发的NaYF4∶Yb/Tm/Ca@NaGdF4∶Nd/Yb上转换纳米粒子的制备及其发光性质 [J]. 发光学报, 2020, 41(11): 1358-1366. doi: 10.37188/cjl.20200195http://dx.doi.org/10.37188/cjl.20200195
LIN S W, ZHAO J, FA X M, et al. Preparation and luminescent properties of NaYF4∶Yb/Tm/Ca@NaGdF4∶Nd/Yb up-conversion nanoparticles excited at 808 nm [J]. Chin. J. Lumin., 2020, 41(11): 1358-1366. (in Chinese). doi: 10.37188/cjl.20200195http://dx.doi.org/10.37188/cjl.20200195
DONG H, SUN L D, WANG Y F, et al. Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x nanocrystals [J]. J. Am. Chem. Soc., 2015, 137(20): 6569-6576. doi: 10.1021/jacs.5b01718http://dx.doi.org/10.1021/jacs.5b01718
DUBEY N, CHANDRA S. Upconversion nanoparticles: recent strategies and mechanism based applications [J]. J. Rare Earths, 2022, 40(9): 1343-1359. doi: 10.1016/j.jre.2022.04.015http://dx.doi.org/10.1016/j.jre.2022.04.015
ZHENG W, HUANG P, TU D T, et al. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection [J]. Chem. Soc. Rev., 2015, 44(6): 1379-1415. doi: 10.1039/c4cs00178hhttp://dx.doi.org/10.1039/c4cs00178h
PARK Y I, LEE K T, SUH Y D, et al. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging [J]. Chem. Soc. Rev., 2015, 44(6): 1302-1317. doi: 10.1039/c4cs00173ghttp://dx.doi.org/10.1039/c4cs00173g
LI X M, ZHANG F, ZHAO D Y. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure [J]. Chem. Soc. Rev., 2015, 44(6): 1346-1378. doi: 10.1039/c4cs00163jhttp://dx.doi.org/10.1039/c4cs00163j
DONG H, SUN L D, YAN C H. Local structure engineering in lanthanide-doped nanocrystals for tunable upconversion emissions [J]. J. Am. Chem. Soc., 2021, 143(49): 20546-20561. doi: 10.1021/jacs.1c10425http://dx.doi.org/10.1021/jacs.1c10425
WANG F, HAN Y, LIM C S, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping [J]. Nature, 2010, 463(7284): 1061-1065. doi: 10.1038/nature08777http://dx.doi.org/10.1038/nature08777
WANG Z Y, WANG Y Q, SUN Y J, et al. Polarized spectral properties of Sm3+∶CaYAlO4 crystal [J]. Opt. Mater., 2021, 115: 111066-1-6. doi: 10.1016/j.optmat.2021.111066http://dx.doi.org/10.1016/j.optmat.2021.111066
SHI Q F, HUANG Y, IVANOVSKIKH K V, et al. Luminescence properties and host sensitization study of Ba3La(PO4)3∶Ce3+ with (V)UV and X-ray excitation [J]. J. Alloys Compd., 2020, 817: 152704-1-7. doi: 10.1016/j.jallcom.2019.152704http://dx.doi.org/10.1016/j.jallcom.2019.152704
LI H Y, YANG H K, MOON B K, et al. Crystal structure, electronic structure, and optical and photoluminescence properties of Eu(Ⅲ) ion-doped Lu6Mo(W)O12 [J]. Inorg. Chem., 2011, 50(24): 12522-12530. doi: 10.1021/ic201452chttp://dx.doi.org/10.1021/ic201452c
JIN X Y, XIE Y, TANG R, et al. Novel double perovskite Sr3WO6∶Sm3+, Na+ orange-red emitting phosphors with high thermal stability for white LEDs [J]. J. Alloys Compd., 2022, 899: 162739-1-11. doi: 10.1016/j.jallcom.2021.162739http://dx.doi.org/10.1016/j.jallcom.2021.162739
SEO H J. Line broadening and crystallographic sites for Eu3+ in disordered double borate Ca3Gd2(BO3)4 [J]. J. Alloys Compd., 2014, 604: 100-105. doi: 10.1016/j.jallcom.2014.03.094http://dx.doi.org/10.1016/j.jallcom.2014.03.094
CHEN X L, CHEN X Y, ZHAI X S, et al. Remarkably enhanced red upconversion emission in β-NaLuF4∶Er, Tm microcrystals via ion exchange [J]. Inorg. Chem., 2022, 61(28): 10713-10721. doi: 10.1021/acs.inorgchem.2c00899http://dx.doi.org/10.1021/acs.inorgchem.2c00899
PANG T, WU Y Y, ZHANG Y J, et al. Excitation-wavelength-dependent anti-thermal quenching of upconversion luminescence in hexagonal NaGdF4∶Nd3+/Yb3+/Er3+ nanocrystals [J]. J. Mater. Chem. C, 2022, 10(13): 5109-5115. doi: 10.1039/d2tc00263ahttp://dx.doi.org/10.1039/d2tc00263a
LIU Q, SUN Y, YANG T S, et al. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo [J]. J. Am. Chem. Soc., 2011, 133(43): 17122-17125. doi: 10.1021/ja207078shttp://dx.doi.org/10.1021/ja207078s
WU S B, ZHAN S P, CHENG S B, et al. Surface crystallization enhanced upconversion luminescence in NaGdF4∶Yb,Er@NaYF4 core/shell nanocrystals [J]. J. Alloys Compd., 2022, 925: 166555-1-8. doi: 10.1016/j.jallcom.2022.166555http://dx.doi.org/10.1016/j.jallcom.2022.166555
BUTLER P H. Point Group Symmetry Applications: Methods and Tables [M]. New York: Plenum Press, 1981.
LIU R, TU D T, LIU Y S, et al. Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF4 nanocrystals [J]. Nanoscale, 2012, 4(15): 4485-4491. doi: 10.1039/c2nr30794dhttp://dx.doi.org/10.1039/c2nr30794d
CASCALES C, BLAS A M, RICO M, et al. The optical spectroscopy of lanthanides R3+ in ABi(XO4)2 (A = Li, Na; X = Mo, W) and LiYb(MoO4)2 multifunctional single crystals: relationship with the structural local disorder [J]. Opt. Mater., 2005, 27(11): 1672-1680. doi: 10.1016/j.optmat.2004.11.051http://dx.doi.org/10.1016/j.optmat.2004.11.051
WANG Z J, ZHONG J P, LIANG H B, et al. Luminescence properties of lutetium based red-emitting phosphor NaLu⁃(WO4)2∶Eu3+ [J]. Opt. Mater. Express, 2013, 3(3): 418-425. doi: 10.1364/ome.3.000418http://dx.doi.org/10.1364/ome.3.000418
PIN S, PICCINELLI F, KUMAR K U, et al. Structural investigation and luminescence of nanocrystalline lanthanide doped NaNbO3 and Na0.5K0.5NbO3 [J]. J. Solid State Chem., 2012, 196: 1-10. doi: 10.1016/j.jssc.2012.08.003http://dx.doi.org/10.1016/j.jssc.2012.08.003
HUANG P, ZHENG W, ZHOU S Y, et al. Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers [J]. Angew. Chem. Int. Ed., 2014, 53(5): 1252-1257. doi: 10.1002/anie.201309503http://dx.doi.org/10.1002/anie.201309503
ZHOU Q L, HUANG P, ZHENG W, et al. Cooperative and non-cooperative sensitization upconversion in lanthanide-doped LiYbF4 nanoparticles [J]. Nanoscale, 2017, 9(19): 6521-6528. doi: 10.1039/c7nr02124khttp://dx.doi.org/10.1039/c7nr02124k
ZHAO J B, JIN D Y, SCHARTNER E P, et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence [J]. Nat. Nanotechnol., 2013, 8(10): 729-734. doi: 10.1038/nnano.2013.171http://dx.doi.org/10.1038/nnano.2013.171
HUANG X Y. Tuning the size and upconversion luminescence of NaYbF4∶Er3+/Tm3+ nanoparticles through Y3+ or Gd3+ doping [J]. Opt. Mater. Express, 2016, 6(7): 2165-2176. doi: 10.1364/ome.6.002165http://dx.doi.org/10.1364/ome.6.002165
蒙铭周, 张瑞, 法信蒙, 等. Ce3+掺杂对NaYF4∶Yb3+,Tm3+纳米粒子上转换发光性能的影响及其荧光温度特性应用 [J]. 发光学报, 2021, 42(11): 1763-1773.
MENG M Z, ZHANG R, FA X M, et al. Effect of Ce3+ doping on upconversion luminescence of NaYF4∶Yb3+,Tm3+ nanoparticles and application of fluorescence temperature characteristics [J]. Chin. J. Lumin., 2021, 42(11): 1763-1773. (in Chinese)
MISIAK M, CICHY B, BEDNARKIEWICZ A, et al. Influence of Li+ doping on up-conversion and structural properties of Yb3+/Tm3+-doped cubic NaYF4 nanocrystals [J]. J. Lumin., 2014, 145: 956-962. doi: 10.1016/j.jlumin.2013.09.021http://dx.doi.org/10.1016/j.jlumin.2013.09.021
LIANG Z Q, CUI Y, ZHAO S L, et al. The enhanced upconversion fluorescence and almost unchanged particle size of β- NaYF4∶Yb3+, Er3+ nanoparticles by codoping with K+ ions [J]. J. Alloys Compd., 2014, 610: 432-437. doi: 10.1016/j.jallcom.2014.04.183http://dx.doi.org/10.1016/j.jallcom.2014.04.183
LEI L, CHEN D Q, XU J, et al. Highly intensified upconversion luminescence of Ca2+-doped Yb/Er∶NaGdF4 nanocrystals prepared by a solvothermal route [J]. Chem. Asian J., 2014, 9(3): 728-733. doi: 10.1002/asia.201301514http://dx.doi.org/10.1002/asia.201301514
ZHAO J, HU Y B, LIN S W, et al. Enhanced luminescence intensity of near-infrared-sensitized upconversion nanoparticles via Ca2+ doping for a nitric oxide release platform [J]. J. Mater. Chem. B, 2020, 8(30): 6481-6489. doi: 10.1039/d0tb00088dhttp://dx.doi.org/10.1039/d0tb00088d
ZHOU H F, WANG X C, LAI Y F, et al. Upconversion improvement in KLaF4∶Yb3+/Er3+ nanoparticles by doping Al3+ ions [J]. Appl. Phys. A, 2017, 123(10): 654-1-6. doi: 10.1007/s00339-017-1260-3http://dx.doi.org/10.1007/s00339-017-1260-3
HUANG Q M, YU J C, MA E, et al. Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/Er3+/Yb3+ tridoped NaYF4 [J]. J. Phys. Chem. C, 2010, 114(10): 4719-4724. doi: 10.1021/jp908645hhttp://dx.doi.org/10.1021/jp908645h
FU J X, ZHANG X Z, CHAO Z C, et al. Enhanced upconversion luminescence of NaYF4∶Yb, Er microprisms via La3+ doping [J]. Opt. Laser Technol., 2017, 88: 280-286. doi: 10.1016/j.optlastec.2016.09.029http://dx.doi.org/10.1016/j.optlastec.2016.09.029
AN Z B, WANG L J, GAO C, et al. Fe3+-enhanced NIR-to-NIR upconversion nanocrystals for tumor-targeted trimodal bioimaging [J]. New J. Chem., 2018, 42(20): 17073-17082. doi: 10.1039/c8nj04248ahttp://dx.doi.org/10.1039/c8nj04248a
ZHU W, WU Q X, ZHAO S L, et al. Enhanced upconversion fluorescence and altered particle size of β-NaGdF4∶Yb3+/Er3+ nanocrystals by codoping with Mo3+ ions [J]. Opt. Mater. Express, 2016, 6(9): 3001-3007. doi: 10.1364/ome.6.003001http://dx.doi.org/10.1364/ome.6.003001
NANNURI S H, KULKARNI S D, SUBASH C K, et al. Post annealing induced manipulation of phase and upconversion luminescence of Cr3+ doped NaYF4∶Yb, Er crystals [J]. RSC Adv., 2019, 9(17): 9364-9372.
LI Y B, LI F J, HUANG Y N, et al. Fe3+-codoped ultra-small NaGdF4∶Nd3+ nanophosphors: enhanced near-infrared luminescence, reduced particle size and bioimaging applications [J]. RSC Adv., 2019, 9(31): 18070-18075. doi: 10.1039/c9ra00798ahttp://dx.doi.org/10.1039/c9ra00798a
SERRANO D, BRAUD A, DOUALAN J L, et al. Pr3+ cluster management in CaF2 by codoping with Lu3+ or Yb3+ for visible lasers and quantum down-converters [J]. J. Opt. Soc. Am. B, 2012, 29(8): 1854-1862. doi: 10.1364/josab.29.001854http://dx.doi.org/10.1364/josab.29.001854
GOPICH I V, SZABO A. Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET [J]. Proc. Natl. Acad. Sci. USA, 2012, 109(20): 7747-7752. doi: 10.1073/pnas.1205120109http://dx.doi.org/10.1073/pnas.1205120109
ZHENG X G, CHEN Y, PAN S S, et al. Morphology evolution, tunable multicolor and enhanced upconversion luminescence via Li+ doping in Yb3+/Tm3+/Ho3+ tri-doped NaYF4 microcrystals [J]. J. Fluorine Chem., 2022, 261-262: 110013-1-9. doi: 10.1016/j.jfluchem.2022.110013http://dx.doi.org/10.1016/j.jfluchem.2022.110013
CHENG Z L, MENG M Z, QIAO X, et al. The synthesis of Er3+/Yb3+/K+ triple-doped NaYF4 phosphors and its high sensitivity optical thermometers at low power [J]. J. Alloys Compd., 2023, 937: 168299. doi: 10.1016/j.jallcom.2022.168299http://dx.doi.org/10.1016/j.jallcom.2022.168299
LI Y B, LI X L, XUE Z L, et al. M2+ doping induced simultaneous phase/size control and remarkable enhanced upconversion luminescence of NaLnF4 probes for optical-guided tiny tumor diagnosis [J]. Adv. Healthc. Mater., 2017, 6(10): 1601231-1-9. doi: 10.1002/adhm.201601231http://dx.doi.org/10.1002/adhm.201601231
ZENG L W, LI Z Y, CHEN D Q, et al. Tin-(Ⅳ) dopant-controlled synthesis of Yb3+/Er3+∶NaGdF4 nanocrystals: morphology transformation and intensified upconversion performance [J]. J. Alloys Compd., 2019, 811: 152048-1-10. doi: 10.1016/j.jallcom.2019.152048http://dx.doi.org/10.1016/j.jallcom.2019.152048
CHEN D Q, HUANG P, YU Y L, et al. Dopant-induced phase transition: a new strategy of synthesizing hexagonal upconversion NaYF4 at low temperature [J]. Chem. Commun., 2011, 47(20): 5801-5803. doi: 10.1039/c0cc05722chttp://dx.doi.org/10.1039/c0cc05722c
PROROK K, OLK M, SKOWICKI M, et al. Near-infrared excited luminescence and in vitro imaging of HeLa cells by using Mn2+ enhanced Tb3+ and Yb3+ cooperative upconversion in NaYF4 nanocrystals [J]. Nanoscale Adv., 2019, 1(9): 3463-3473. doi: 10.1039/c9na00336chttp://dx.doi.org/10.1039/c9na00336c
DU K M, XU X, YAO S, et al. Enhanced upconversion luminescence and controllable phase/shape of NaYF4∶Yb/Er crystals through Cu2+ ion doping [J]. CrystEngComm, 2018, 20(14): 1945-1953. doi: 10.1039/c7ce02227ahttp://dx.doi.org/10.1039/c7ce02227a
ZUO P F, ZHAO S L, SONG D D, et al. Enhancement of upconversion emissions of NaYF4∶Yb3+, Tm3+ nanoparticles by Ba2+ co-doping [J]. J. Nanosci. Nanotechnol., 2018, 18(11): 7584-7589. doi: 10.1166/jnn.2018.16088http://dx.doi.org/10.1166/jnn.2018.16088
YANG Y X, XU Z, ZHAO S L, et al. Shape controllable synthesis and enhanced upconversion photoluminescence of beta-NaGdF4∶Yb3+, Er3+ nanocrystals by introducing Mg2+ [J]. Chin. Phys. B, 2017, 26(8): 087801. doi: 10.1088/1674-1056/26/8/087801http://dx.doi.org/10.1088/1674-1056/26/8/087801
ZHAO S W, LIU W, XUE X Y, et al. Enhanced upconversion luminescence and modulated paramagnetic performance in NaGdF4∶Yb, Er by Mg2+ tridoping [J]. RSC Adv., 2016, 6(85): 81542-81551. doi: 10.1039/c6ra13711chttp://dx.doi.org/10.1039/c6ra13711c
CONG T, DING Y D, LIU J P, et al. Synthesis and optical properties of Zn2+ doped NaYF4∶Yb3+,Er3+ upconversion nanoparticles [J]. Mater. Lett., 2016, 165: 59-62. doi: 10.1016/j.matlet.2015.11.109http://dx.doi.org/10.1016/j.matlet.2015.11.109
ZHENG W, ZHOU S Y, CHEN Z, et al. Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection [J]. Angew. Chem. Int. Ed., 2013, 52(26): 6671-6676. doi: 10.1002/anie.201302481http://dx.doi.org/10.1002/anie.201302481
DING Y L, ZHANG X D, GAO H B, et al. Enhancement on concentration quenching threshold and upconversion luminescence of β-NaYF4∶Er3+/Yb3+ codoping with Li+ ions [J]. J. Alloys Compd., 2014, 599: 60-64. doi: 10.1016/j.jallcom.2014.02.050http://dx.doi.org/10.1016/j.jallcom.2014.02.050
HUANG Y A, XIAO Q B, HU H S, et al. 915 nm light-triggered photodynamic therapy and MR/CT dual-modal imaging of tumor based on the nonstoichiometric Na0.52YbF3.52∶Er upconversion nanoprobes [J]. Small, 2016, 12(31): 4200-4210. doi: 10.1002/smll.201601023http://dx.doi.org/10.1002/smll.201601023
HAO J H, ZHANG Y, WEI X H. Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3∶Yb/Er thin films [J]. Angew. Chem. Int. Ed., 2011, 50(30): 6876-6880. doi: 10.1002/anie.201101374http://dx.doi.org/10.1002/anie.201101374
CHEN P, JIA H, ZHANG J P, et al. Magnetic tuning of optical hysteresis behavior in lanthanide-doped nanoparticles [J]. J. Phys. Chem. C, 2015, 119(10): 5583-5588. doi: 10.1021/jp511914fhttp://dx.doi.org/10.1021/jp511914f
TOLBERT S H, ALIVISATOS A P. Size dependence of a first order solid-solid phase transition: the wurtzite to rock salt transformation in CdSe nanocrystals [J]. Science, 1994, 265(5170): 373-376. doi: 10.1126/science.265.5170.373http://dx.doi.org/10.1126/science.265.5170.373
NARAYANA C, LUO H, ORLOFF J, et al. Solid hydrogen at 342 GPa: no evidence for an alkali metal [J]. Nature, 1998, 393(6680): 46-49. doi: 10.1038/29949http://dx.doi.org/10.1038/29949
WISSER M D, CHEA M, LIN Y, et al. Strain-induced modification of optical selection rules in lanthanide-based upconverting nanoparticles [J]. Nano Lett., 2015, 15(3): 1891-1897. doi: 10.1021/nl504738khttp://dx.doi.org/10.1021/nl504738k
MEI S, GUO Y, LIN X H, et al. Experimental and simulation insights into local structure and luminescence evolution in Eu3+-doped nanocrystals under high pressure [J]. Phys. Chem. Lett., 2020, 11(9): 3515-3520. doi: 10.1021/acs.jpclett.0c00895http://dx.doi.org/10.1021/acs.jpclett.0c00895
ZHANG H F, HOU S M, WANG T, et al. Realization of pressure induced emission enhancement for rare earth luminescent materials: adopting delta-doped structure [J]. J. Alloys Compd., 2021, 859: 157882-1-8. doi: 10.1016/j.jallcom.2020.157882http://dx.doi.org/10.1016/j.jallcom.2020.157882
RUNOWSKI M, MARCINIAK J, GRZYB T, et al. Lifetime nanomanometry high-pressure luminescence of up-converting lanthanide nanocrystals-SrF2∶Yb3+,Er3+ [J]. Nanoscale, 2017, 9(41): 16030-16037. doi: 10.1039/c7nr04353hhttp://dx.doi.org/10.1039/c7nr04353h
BAE H, LEE K T. Effect of tetragonal to cubic phase transition on the upconversion luminescence properties of A/B site erbium-doped perovskite BaTiO3 [J]. RSC Adv., 2019, 9(5): 2451-2457. doi: 10.1039/c8ra09783fhttp://dx.doi.org/10.1039/c8ra09783f
ZHOU J J, WEN S H, LIAO J Y, et al. Activation of the surface dark-layer to enhance upconversion in a thermal field [J] Nat. Photonics, 2018, 12(3): 154-158. doi: 10.1038/s41566-018-0108-5http://dx.doi.org/10.1038/s41566-018-0108-5
WANG Z J, CHRISTIANSEN J, WEZENDONK D, et al. Thermal enhancement and quenching of upconversion emission in nanocrystals [J]. Nanoscale, 2019, 11(25): 12188-12197. doi: 10.1039/c9nr02271fhttp://dx.doi.org/10.1039/c9nr02271f
YI G S, LU H C, ZHAO S Y, et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4∶Yb, Er infrared-to-visible up-conversion phosphors [J]. Nano Lett., 2004, 4(11): 2191-2196. doi: 10.1021/nl048680hhttp://dx.doi.org/10.1021/nl048680h
ZHOU Y H, CHENG Y, XU J, et al. Thermo-enhanced upconversion luminescence in inert-core/active-shell UCNPs: the inert core matters [J]. Nanoscale, 2021, 13(13): 6569-6576. doi: 10.1039/d1nr00752ahttp://dx.doi.org/10.1039/d1nr00752a
RABOUW F T, PRINS P T, VILLANUEVA-DELGADO P, et al. Quenching pathways in NaYF4∶Er3+,Yb3+ upconversion nanocrystals [J]. ACS Nano, 2018, 12(5): 4812-4823. doi: 10.1021/acsnano.8b01545http://dx.doi.org/10.1021/acsnano.8b01545
CUI H Q, CAO Y Z, ZHANG L, et al. Thermal enhancement of the 2H11/2→4I15/2 up-conversion luminescence of Er3+-doped K2Yb(PO4)(MoO4) phosphors [J]. J. Mater. Chem. C, 2021, 9(36): 12159-12167. doi: 10.1039/d1tc02442fhttp://dx.doi.org/10.1039/d1tc02442f
0
浏览量
582
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构