浏览全部资源
扫码关注微信
1.天津大学化工学院 化学工程联合国家重点实验室, 天津 300350
2.河北省地质实验测试中心, 河北省矿产资源与生态环境监测重点实验室, 河北 保定 071051
3.西安近代化学研究所 含能材料全国重点实验室, 陕西 西安 710065
[ "李子欣(1999-),男,天津人,硕士研究生,2021年于天津大学获得学士学位,主要从事发光聚氨酯的制备及性能的研究。E-mail: zixinli@tju. edu. cn" ]
[ "肖立柏(1982-),男,河北承德人,博士研究生,研究员,2009年于太原理工大学获得硕士学位,主要从事含能材料性能评估及调控的研究。E-mail: lbxchem@163.com" ]
[ "任相魁(1980-),男,河北邢台人,博士,教授,2010年于南开大学获得博士学位,主要从事小分子及高分子材料的聚集态结构和光电性质的研究。E-mail: renxiangkui@tju. edu. cn" ]
纸质出版日期:2023-06-05,
收稿日期:2023-01-09,
修回日期:2023-01-18,
扫 描 看 全 文
李子欣,黄汉军,YOU Somary等.自愈合发光聚氨酯弹性体的制备与性能[J].发光学报,2023,44(06):985-994.
LI Zixin,HUANG Hanjun,YOU Somary,et al.Preparation and Properties of Self-healing Luminescent Polyurethane Elastomer[J].Chinese Journal of Luminescence,2023,44(06):985-994.
李子欣,黄汉军,YOU Somary等.自愈合发光聚氨酯弹性体的制备与性能[J].发光学报,2023,44(06):985-994. DOI: 10.37188/CJL.20230005.
LI Zixin,HUANG Hanjun,YOU Somary,et al.Preparation and Properties of Self-healing Luminescent Polyurethane Elastomer[J].Chinese Journal of Luminescence,2023,44(06):985-994. DOI: 10.37188/CJL.20230005.
聚氨酯材料具有优异的力学性能,而发光自愈合聚氨酯在裂缝自诊断和修复等领域具有广阔的应用前景。本文将双(2⁃羟乙基)二硫化物(HEDS)和1⁃(4⁃羟基苯基)⁃1,2,2⁃三苯乙烯(TPE⁃OH)通过化学键键接到聚氨酯体系中,制备了一种具有光致发光性质的自愈合聚氨酯(PUDS),采用傅里叶红外光谱对其化学结构进行了表征,通过X射线衍射仪、万能拉力试验机、荧光分光光度计等方法详细研究了材料的聚集态结构、力学性质、自愈合性能以及光致发光性质。实验结果表明,PUDS具有优异的光致发光性质,其自愈合性能及力学性能与动态二硫键及硬段含量有关。随着动态二硫键含量的增加,材料的自愈合性能逐渐增强,但力学性能逐渐减弱;随着硬段含量的增加,其自愈合性能逐渐减弱,但力学性能逐渐增强。因此,PUDS的力学性能和自愈合性能可通过改变动态二硫键及硬段的含量来调节。在工作中,动态二硫键含量为6.9%(wt)时,样品具有最佳的自愈合性能、力学性能以及光致发光性质。
Polyurethane materials have excellent mechanical properties, and luminescent self-healing polyurethanes have promising applications in areas such as crack self-diagnosis and repair. In this paper, a self-healing polyurethane (PUDS) with photoluminescent property was prepared by bonding bis(2-hydroxyethyl) disulfide (HEDS) and 1-(4-hydroxyphenyl)-1,2,2-tristyrene (TPE-OH) to a polyurethane system through chemical bonding, and its chemical structure was characterized by Fourier infrared spectroscopy. The aggregated structure, mechanical properties, self-healing properties and photoluminescence properties of PUDS were investigated in detail by X-ray diffraction, universal tensile tester, fluorescence spectrophotometer and other methods. The experimental results show that PUDS has excellent photoluminescence property, and its self-healing property and mechanical property are related to the dynamic disulfide bonding and hard segment content. With the increase of dynamic disulfide bonding, the self-healing property of materials gradually increases, but the mechanical property gradually decreases. With the increase of hard segment content, the self-healing property gradually decreases, but the mechanical property gradually increases. Therefore, the mechanical property and self-healing property of PUDS can be adjusted by changing the content of dynamic disulfide bonding and hard segment. In the work, the best self-healing property, mechanical property and photoluminescence property of the samples were obtained at 6.9%(wt) of dynamic disulfide bonding.
聚集诱导发光四苯基乙烯聚氨酯自愈合光致发光
aggregation induced emissiontetraphenylethylenepolyurethaneself-healingphotoluminescenc
AKINDOYO J O, BEG M D H, GHAZALI S, et al. Polyurethane types, synthesis and applications—a review [J]. RSC Adv., 2016, 6(115): 114453-114482. doi: 10.1039/c6ra14525fhttp://dx.doi.org/10.1039/c6ra14525f
ENGELS H W, PIRKL H G, ALBERS R, et al. Polyurethanes: versatile materials and sustainable problem solvers for today's challenges [J]. Angew. Chem. Int. Ed., 2013, 52(36): 9422-9441. doi: info:doi/10.1002/anie.201302766http://dx.doi.org/info:doi/10.1002/anie.201302766
REN M N, ZHOU Y J, WANG Y, et al. Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure [J]. Chem. Eng. J., 2019, 360: 762-777. doi: 10.1016/j.cej.2018.12.025http://dx.doi.org/10.1016/j.cej.2018.12.025
LI Y H, ZHOU B, ZHENG G Q, et al. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing [J]. J. Mater. Chem. C, 2018, 6(9): 2258-2269. doi: 10.1039/c7tc04959ehttp://dx.doi.org/10.1039/c7tc04959e
HE Z L, ZHOU G H, BYUN J H, et al. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors [J]. Nanoscale, 2019, 11(13): 5884-5890. doi: 10.1039/c9nr01005jhttp://dx.doi.org/10.1039/c9nr01005j
GAO Q S, PAN Y M, ZHENG G Q, et al. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances [J]. Adv. Compos. Hybrid Mater., 2021, 4(2): 274-285. doi: 10.1007/s42114-021-00221-4http://dx.doi.org/10.1007/s42114-021-00221-4
CHEN Q, GAO Q S, WANG X, et al. Flexible, conductive, and anisotropic thermoplastic polyurethane/polydopamine/MXene foam for piezoresistive sensors and motion monitoring [J]. Compos. Part A: Appl. Sci. Manuf., 2022, 155: 106838-1-8. doi: 10.1016/j.compositesa.2022.106838http://dx.doi.org/10.1016/j.compositesa.2022.106838
JIA Z X, LI Z J, MA S F, et al. Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor [J]. J. Colloid Interface Sci., 2021, 584: 1-10. doi: 10.1016/j.jcis.2020.09.035http://dx.doi.org/10.1016/j.jcis.2020.09.035
VERSTRAETE G, SAMARO A, GRYMONPRÉ W, et al. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes [J]. Int. J. Pharm., 2018, 536(1): 318-325. doi: 10.1016/j.ijpharm.2017.12.002http://dx.doi.org/10.1016/j.ijpharm.2017.12.002
AGUIRRESAROBE R H, NEVEJANS S, RECK B, et al. Healable and self-healing polyurethanes using dynamic chemistry [J]. Prog. Polym. Sci., 2021, 114: 101362-1-31. doi: 10.1016/j.progpolymsci.2021.101362http://dx.doi.org/10.1016/j.progpolymsci.2021.101362
ZHANG Q H, NIU S M, WANG L, et al. An Elastic Autonomous self-healing capacitive sensor based on a dynamic dual crosslinked chemical system [J]. Adv. Mater., 2018, 30(33): 1801435-1-8. doi: 10.1002/adma.201801435http://dx.doi.org/10.1002/adma.201801435
ZHANG L Z, LIU Z H, WU X L, et al. A highly efficient self-healing elastomer with unprecedented mechanical properties [J]. Adv. Mater., 2019, 31(23): 1901402-1-8. doi: 10.1002/adma.201901402http://dx.doi.org/10.1002/adma.201901402
SONG K, YE W J, GAO X C, et al. Synergy between dynamic covalent boronic ester and boron-nitrogen coordination: strategy for self-healing polyurethane elastomers at room temperature with unprecedented mechanical properties [J]. Mater. Horiz., 2021, 8(1): 216-223. doi: 10.1039/d0mh01142hhttp://dx.doi.org/10.1039/d0mh01142h
WANG X, ZHANG H J, YANG B, et al. A colorless, transparent and self-healing polyurethane elastomer modulated by dynamic disulfide and hydrogen bonds [J]. New J. Chem., 2020, 44(15): 5746-5754. doi: 10.1039/C9NJ06457Ehttp://dx.doi.org/10.1039/C9NJ06457E
DENG X Y, XIE H, DU L, et al. Polyurethane networks based on disulfide bonds: from tunable multi-shape memory effects to simultaneous self-healing [J]. Sci. China Mater., 2019, 62(3): 437-447. doi: 10.1007/s40843-018-9318-7http://dx.doi.org/10.1007/s40843-018-9318-7
CHANG K, JIA H, GU S Y. A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds [J]. Eur. Polym. J., 2019, 112: 822-831. doi: 10.1016/j.eurpolymj.2018.11.005http://dx.doi.org/10.1016/j.eurpolymj.2018.11.005
LIU M C, ZHONG J, LI Z J, et al. A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding [J]. Eur. Polym. J., 2020, 124: 109475-1-10. doi: 10.1016/j.eurpolymj.2020.109475http://dx.doi.org/10.1016/j.eurpolymj.2020.109475
LAI Y, KUANG X, ZHU P, et al. Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design [J]. Adv. Mater., 2018, 30(38): 1802556-1-8. doi: 10.1002/adma.201802556http://dx.doi.org/10.1002/adma.201802556
ZHANG Q Y, DUAN J L, GUO Q Y, et al. Thermal-triggered dynamic disulfide bond self-heals inorganic perovskite solar cells [J]. Angew. Chem. Int. Ed., 2022, 61(8): 202116632-1-5. doi: 10.1002/anie.202116632http://dx.doi.org/10.1002/anie.202116632
KIM S M, JEON H, SHIN S H, et al. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers [J]. Adv. Mater., 2018, 30(1): 1705145-1-8. doi: 10.1002/adma.201705145http://dx.doi.org/10.1002/adma.201705145
CHEN X X, ZHONG Q Y, CUI C H, et al. Extremely tough, puncture-resistant, transparent, and photoluminescent polyurethane elastomers for crack self-diagnose and healing tracking [J]. ACS Appl. Mater. Interfaces, 2020, 12(27): 30847-30855. doi: 10.1021/acsami.0c07727http://dx.doi.org/10.1021/acsami.0c07727
GAO L J, LI C, WANG C Z, et al. Structure and luminescent property of polyurethane bonded with Eu3+-complex [J]. J. Lumin., 2019, 212: 328-333. doi: 10.1016/j.jlumin.2019.02.055http://dx.doi.org/10.1016/j.jlumin.2019.02.055
HARA H, TAKESHITA S, ISOBE T, et al. A unique photofunction of YVO4∶Bi3+,Eu3+ nanophosphor: photoluminescent indication for photochemical decomposition of polyurethane [J]. Mater. Sci. Eng.: B, 2013, 178(5): 311-315. doi: 10.1016/j.mseb.2012.12.011http://dx.doi.org/10.1016/j.mseb.2012.12.011
YANG Y Q, XIAO B H, HU X H, et al. A long-life green fluorescent waterborne polyurethane-based Tb(Ⅲ) ternary complex with UV shielding [J]. Prog. Org. Coat., 2022, 168: 106892. doi: 10.1016/j.porgcoat.2022.106892http://dx.doi.org/10.1016/j.porgcoat.2022.106892
刘丽明, 杨发福, 郭红玉, 等. Eu3+-四取代杯[4]芳烃酰乙醇胺配合物的合成及其荧光性能 [J]. 合成化学, 2008, 16(1): 43-45.
LIU L M, YANG F F, GUO H Y, et al. Synthesis of Eu3+-calix[4]arene ethanolamide complex and its fluorescence property [J]. Chin. J. Synth. Chem., 2008, 16(1): 43-45. (in Chinese)
CHUNG Y C, CHOI J W, LEE S H, et al. Investigation of fluorescent shape memory polyurethanes grafted with various dyes [J]. Bull. Korean Chem. Soc., 2011, 32(8): 2988-2996. doi: 10.5012/bkcs.2011.32.8.2988http://dx.doi.org/10.5012/bkcs.2011.32.8.2988
CHUNG Y C, YANG K, CHOI J W, et al. Characterisation and application of polyurethane copolymers grafted with photoluminescent dyes [J]. Color. Technol., 2014, 130(4): 305-313. doi: 10.1111/cote.12097http://dx.doi.org/10.1111/cote.12097
SAGARA Y, KARMAN M, SEKI A, et al. Rotaxane-based mechanophores enable polymers with mechanically switchable white photoluminescence [J]. ACS Cent. Sci., 2019, 5(5): 874-881. doi: 10.1021/acscentsci.9b00173http://dx.doi.org/10.1021/acscentsci.9b00173
WANG Z J, MA Z Y, WANG Y, et al. A novel mechanochromic and photochromic polymer film: when rhodamine joins polyurethane [J]. Adv. Mater., 2015, 27(41): 6469-6474. doi: 10.1002/adma.201503424http://dx.doi.org/10.1002/adma.201503424
黄一绥, 杨发福, 郭红玉. 苝酰亚胺接枝纤维素的合成与染料吸附性能 [J]. 应用化学, 2014, 31(8): 892-900.
HUANG Y S, YANG F F, GUO H Y. Synthesis and properties of cellulose resin crosslinked with perylene tetracarboxylic diimides [J]. Chin. J. Appl. Chem., 2014, 31(8): 892-900. (in Chinese)
谢琼, 施叶卉, 吴玉芹, 等. 新型水溶性苝分子探针的合成及对氨基酸的识别 [J]. 广州化工, 2015, 43(9): 65-66. doi: 10.3969/j.issn.1001-9677.2015.09.025http://dx.doi.org/10.3969/j.issn.1001-9677.2015.09.025
XIE Q, SHI Y H, WU Y Q, et al. The synthesis of novel soluble perylene molecular probe and its recognition on amino acids [J]. Guangzhou Chem. Ind., 2015, 43(9): 65-66. (in Chinese). doi: 10.3969/j.issn.1001-9677.2015.09.025http://dx.doi.org/10.3969/j.issn.1001-9677.2015.09.025
LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J]. Chem. Commun., 2001, (18): 1740-1741. doi: 10.1039/b105159hhttp://dx.doi.org/10.1039/b105159h
曹祥建, 左新晓, 孟振功, 等. 二氰基二苯乙烯基苯衍生物合成及力致发光变色性能 [J]. 发光学报, 2021, 42(7): 976-983. doi: 10.37188/CJL.20210129http://dx.doi.org/10.37188/CJL.20210129
CAO X J, ZUO X X, MENG Z G, et al. Synthesis and mechanofluorochromic property of dicyanodistyrylbenzene derivative [J]. Chin. J. Lumin., 2021, 42(7): 976-983. (in Chinese). doi: 10.37188/CJL.20210129http://dx.doi.org/10.37188/CJL.20210129
王嘉慧, 曾晓璇, 吴玥, 等. 具有pH响应性能的聚集诱导发光材料制备与表征 [J]. 发光学报, 2021, 42(3): 311-318. doi: 10.37188/cjl.20210020http://dx.doi.org/10.37188/cjl.20210020
WANG J H, ZENG X X, WU Y, et al. Synthesis and characterization of pH-responsive material with Aggregation-induced Emission property [J]. Chin. J. Lumin., 2021, 42(3): 311-318. (in Chinese). doi: 10.37188/cjl.20210020http://dx.doi.org/10.37188/cjl.20210020
曾雨婷, 张艳芳, 黄汉军, 等. 四苯基乙烯室温液晶发光材料的制备与表征 [J]. 化学工业与工程, 2022, 39(3): 26-32.
ZENG Y T, ZHANG Y F, HUANG H J, et al. Preparation and characterization of tetraphenylethylene derivative as room temperature liquid crystalline luminescent material [J]. Chemical Industry and Engineering, 2022, 39(3): 26-32. (in Chinese)
ZENG Y T, GAO S Y, TRASKOVSKIS K, et al. Polyhedral oligosilsesquioxane tethered tetraphenylethylene as turn-on fluorescent sensor for fluoride ions detection [J]. Dyes Pigm., 2021, 193: 109491-1-6. doi: 10.1016/j.dyepig.2021.109491http://dx.doi.org/10.1016/j.dyepig.2021.109491
0
浏览量
175
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构