浏览全部资源
扫码关注微信
深圳大学 物理与光电工程学院, 广东 深圳 518060
[ " 张志清(1994-),男,山西阳泉人,硕士研究生,2017年于山西大同大学获得学士学位,主要从事发光材料与器件方面的研究。E-mail: 2110456026@email.szu.edu.cn" ]
[ "叶方浩(1991-),男,湖北武汉人,博士,2020年于武汉理工大学获得博士学位,主要从事发光材料与器件方面的研究。 E-mail: yefanghao@szu.edu.cn" ]
[ "李贵君(1984-),男,贵州兴义人,博士,副教授,2016年于中国香港科技大学获得博士学位,主要从事新型显示技术和高效光伏电池技术方向的 研究。 E-mail: gliad@connect.ust.hk" ]
纸质出版日期:2023-06-05,
收稿日期:2023-01-10,
修回日期:2023-02-03,
扫 描 看 全 文
张志清,罗忠明,朱明超等.基于维度调制的准二维蓝色钙钛矿发光二极管[J].发光学报,2023,44(06):1013-1022.
ZHANG Zhiqing,LUO Zhongming,ZHU Mingchao,et al.Quasi-two-dimensional Blue Perovskite Light-emitting Diodes Based on Phase Modulation[J].Chinese Journal of Luminescence,2023,44(06):1013-1022.
张志清,罗忠明,朱明超等.基于维度调制的准二维蓝色钙钛矿发光二极管[J].发光学报,2023,44(06):1013-1022. DOI: 10.37188/CJL.20230004.
ZHANG Zhiqing,LUO Zhongming,ZHU Mingchao,et al.Quasi-two-dimensional Blue Perovskite Light-emitting Diodes Based on Phase Modulation[J].Chinese Journal of Luminescence,2023,44(06):1013-1022. DOI: 10.37188/CJL.20230004.
金属卤化物钙钛矿(MHP)作为一种新兴的半导体材料,目前已在光电应用中表现出优异的性能。其中,基于MHP的发光二极管(PeLED)发展迅猛,红光和绿光器件的效率已达到商用水平。然而,蓝光PeLED 的效率还远落后于红、绿光器件,这在很大程度上阻碍了 PeLED 在全彩显示领域中的应用。本文通过调节混合卤素阴离子的比例以及准二维钙钛矿组分来实现基于维度调制的准二维蓝色PeLED制备。首先,我们采用在 CsPbBr
3
∶PEABr 准二维钙钛矿中添加苯乙基氯化胺(PEACl)逐步替换苯乙基溴化胺(PEABr),实现了发光峰从502 nm到476 nm的可调制发射。然而,随着PEACl的增加,薄膜中的缺陷及
n
= 1低维相逐渐增多,导致器件效率降低。我们将溴化胍(GABr)引入到CsPbBr
3
∶PEACl 准二维钙钛矿中,
n
= 1低维相得到了显著的抑制,这有利于激子能量的转移,最终蓝光范围内准二维PeLED性能得到了显著提升。本工作为实现高效蓝光 PeLED 提供了新的思路。
As a new semiconductor material, metal halide perovskite (MHP) has shown excellent performance in photoelectric applications. Among them, MHP based light emitting diodes (PeLEDs) have developed rapidly, and the efficiency of red and green light devices has reached the commercial level. However, the efficiency of blue PeLED still lags far behind the counterparts, which largely hinders the application of PeLED in the field of full color display. In this paper, the blue-color quasi two-dimensional PeLED based on dimensional modulation is prepared by adjusting the proportion of mixed halogen anions and the composition of quasi two-dimensional perovskite. Firstly, we used the addition of phenylethylamine chloride (PEACl) to CsPbBr
3
∶PEABr quasi two-dimensional perovskite to gradually replace phenylethylamine bromide (PEABr), and realized the modulated emission peak from 502 nm to 476 nm. However, with the increase of PEACl, the defects and
n
= 1 low-dimensional phase in thin films gradually increase, leading to a decrease of device efficiency. We introduced guanidine bromide (GABr) into CsPbBr
3
∶PEACl blue quasi-two-dimensional perovskite, and the
n
= 1 low-dimensional phase was significantly inhibited, which was conducive to exciton energy transfer, and finally the performance of quasi-two-dimensional PeLED was significantly improved in the range of blue light. This work provides a new approach for realizing efficient blue PeLED.
钙钛矿发光二极管维度调制蓝光PEACl掺杂GABr掺杂
perovskite light-emitting diodephase modulationblue emissionPEACl dopingGABr doping
WON Y H, CHO O, KIM T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes [J]. Nature, 2019, 575(7784): 634-638. doi: 10.1038/s41586-019-1771-5http://dx.doi.org/10.1038/s41586-019-1771-5
HUANG Y G, HSIANG E L, DENG M Y, et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives [J]. Light: Sci. Appl., 2020, 9(1): 105-1-16. doi: 10.1038/s41377-020-0341-9http://dx.doi.org/10.1038/s41377-020-0341-9
HAN T H, JANG K Y, DONG Y T, et al. A roadmap for the commercialization of perovskite light emitters [J]. Nat. Rev. Mater., 2022, 7(10): 757-777. doi: 10.1038/s41578-022-00459-4http://dx.doi.org/10.1038/s41578-022-00459-4
WU X G, JI H L, YAN X L, et al. Industry outlook of perovskite quantum dots for display applications [J]. Nat. Nanotechnol., 2022, 17(8): 813-816. doi: 10.1038/s41565-022-01163-8http://dx.doi.org/10.1038/s41565-022-01163-8
LIU X K, XU W D, BAI S, et al. Metal halide perovskites for light-emitting diodes [J]. Nat. Mater., 2021, 20(1): 10-21. doi: 10.1038/s41563-020-0784-7http://dx.doi.org/10.1038/s41563-020-0784-7
皮慧慧, 李国辉, 周博林, 等. 高效率钙钛矿量子点发光二极管研究进展 [J]. 发光学报, 2021, 42(5): 650-667. doi: 10.37188/CJL.20200406http://dx.doi.org/10.37188/CJL.20200406
PI H H, LI G H, ZHOU B L, et al. Progress of high-efficiency perovskite quantum dot light-emitting diodes [J]. Chin. J. Lumin., 2021, 42(5): 650-667. (in Chinese). doi: 10.37188/CJL.20200406http://dx.doi.org/10.37188/CJL.20200406
许玉帅, 王海龙, 陈良, 等. 蓝光钙钛矿材料及其电致发光器件 [J]. 液晶与显示, 2021, 36(1): 113-122. doi: 10.37188/CJLCD.2020-0215http://dx.doi.org/10.37188/CJLCD.2020-0215
XU Y S, WANG H L, CHEN L, et al. Blue perovskite materials for light-emitting diodes [J]. Chin. J. Liq. Cryst. Disp., 2021, 36(1): 113-122. (in Chinese). doi: 10.37188/CJLCD.2020-0215http://dx.doi.org/10.37188/CJLCD.2020-0215
李今朝, 曹焕奇, 张超, 等. 气相辅助刮刀涂布法制备钙钛矿薄膜 [J]. 中国光学, 2019, 12(5): 1028-1039. doi: 10.3788/co.20191205.1028http://dx.doi.org/10.3788/co.20191205.1028
LI J Z, CAO H Q, ZHANG C, et al. Vapor assisted doctor blading process to fabricate perovskite thin films [J]. Chin. Opt., 2019, 12(5): 1028-1039. (in Chinese). doi: 10.3788/co.20191205.1028http://dx.doi.org/10.3788/co.20191205.1028
陈捷达, 李东栋, 朱绪飞, 等. 柔性钙钛矿电池的机械稳定性提升策略 [J]. 光学 精密工程, 2022, 30(19): 2332-2352. doi: 10.37188/OPE.20223019.2332http://dx.doi.org/10.37188/OPE.20223019.2332
CHEN J D, LI D D, ZHU X F, et al. Strategy of improving mechanical stability of flexible perovskite solar cells [J]. Opt. Precision Eng., 2022, 30(19): 2332-2352. (in Chinese). doi: 10.37188/OPE.20223019.2332http://dx.doi.org/10.37188/OPE.20223019.2332
KIM J S, HEO J M, PARK G S, et al. Ultra-bright, efficient and stable perovskite light-emitting diodes [J]. Nature, 2022, 611(7937): 688-694. doi: 10.1038/s41586-022-05304-whttp://dx.doi.org/10.1038/s41586-022-05304-w
WANG Y K, SINGH K, LI J Y, et al. In situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids [J]. Adv. Mater., 2022, 34(21): 2200854-1-6. doi: 10.1002/adma.202200854http://dx.doi.org/10.1002/adma.202200854
JIANG Y Z, SUN C J, XU J, et al. Synthesis-on-substrate of quantum dot solids [J]. Nature, 2022, 612(7941): 679-684. doi: 10.1038/s41586-022-05486-3http://dx.doi.org/10.1038/s41586-022-05486-3
AKKERMAN Q A, D’INNOCENZO V, ACCORNERO S, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions [J]. J. Am. Chem. Soc., 2015, 137(32): 10276-10281. doi: 10.1021/jacs.5b05602http://dx.doi.org/10.1021/jacs.5b05602
SCHARF E, KRIEG F, ELIMELECH O, et al. Ligands mediate anion exchange between colloidal lead-halide perovskite nanocrystals [J]. Nano Lett., 2022, 22(11): 4340-4346. doi: 10.1021/acs.nanolett.2c00611http://dx.doi.org/10.1021/acs.nanolett.2c00611
YE F H, YAN H B, LIU S Y, et al. Interface engineering with quaternary ammonium-based ionic liquids toward efficient blue perovskite light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2022, 14(44): 50393-50400. doi: 10.1021/acsami.2c15144http://dx.doi.org/10.1021/acsami.2c15144
JACOBS D A, WOLFF C M, CHIN X Y, et al. Lateral ion migration accelerates degradation in halide perovskite devices [J]. Energy Environ. Sci., 2022, 15(12): 5324-5339. doi: 10.1039/d2ee02330jhttp://dx.doi.org/10.1039/d2ee02330j
YAN X, FAN W Q, CHENG F Y, et al. Ion migration in hybrid perovskites: classification, identification, and manipulation [J]. Nano Today, 2022, 44: 101503. doi: 10.1016/j.nantod.2022.101503http://dx.doi.org/10.1016/j.nantod.2022.101503
LIU Y T, IEVLEV A V, BORODINOV N, et al. Direct observation of photoinduced ion migration in lead halide perovskites [J]. Adv. Funct. Mater., 2021, 31(8): 2008777-1-8. doi: 10.1002/adfm.202008777http://dx.doi.org/10.1002/adfm.202008777
SAKHATSKYI K, JOHN R A, GUERRERO A, et al. Assessing the drawbacks and benefits of ion migration in lead halide perovskites [J]. ACS Energy Lett., 2022, 7(10): 3401-3414. doi: 10.1021/acsenergylett.2c01663http://dx.doi.org/10.1021/acsenergylett.2c01663
XU Z J, KERNER R A, BERRY J J, et al. Iodine electrochemistry dictates voltage-induced halide segregation thresholds in mixed-halide perovskite devices [J]. Adv. Funct. Mater., 2022, 32(33): 2203432-1-10. doi: 10.1002/adfm.202203432http://dx.doi.org/10.1002/adfm.202203432
LIU B X, LI J Z, WANG G, et al. Lattice strain modulation toward efficient blue perovskite light-emitting diodes [J]. Sci. Adv., 2022, 8(38): eabq0138-1-8. doi: 10.1126/sciadv.abq0138http://dx.doi.org/10.1126/sciadv.abq0138
ZHOU Y H, WANG C Y, YUAN S, et al. Stabilized low-dimensional species for deep-blue perovskite light-emitting diodes with EQE approaching 3.4% [J]. J. Am. Chem. Soc., 2022, 144(40): 18470-18478. doi: 10.1021/jacs.2c07172http://dx.doi.org/10.1021/jacs.2c07172
LUO Z M, LIU B X, ZHENG T, et al. High-efficiency sky-blue perovskite light-emitting diodes via the trade-off between the electron⁃phonon coupling loss and defect passivation [J]. ACS Photonics, 2022, 9(7): 2422-2430. doi: 10.1021/acsphotonics.2c00496http://dx.doi.org/10.1021/acsphotonics.2c00496
REN Z W, LI L, YU J H, et al. Simultaneous low-order phase suppression and defect passivation for efficient and stable blue light-emitting diodes [J]. ACS Energy Lett., 2020, 5(8): 2569-2579. doi: 10.1021/acsenergylett.0c01015http://dx.doi.org/10.1021/acsenergylett.0c01015
XI J C, WU Y Y, CHEN W J, et al. Cross-linkable molecule in spatial dimension boosting water-stable and high-efficiency perovskite solar cells [J]. Nano Energy, 2022, 93: 106846. doi: 10.1016/j.nanoen.2021.106846http://dx.doi.org/10.1016/j.nanoen.2021.106846
ZHANG F, ZHU K. Additive engineering for efficient and stable perovskite solar cells [J]. Adv. Energy Mater., 2020, 10(13): 1902579-1-26. doi: 10.1002/aenm.201902579http://dx.doi.org/10.1002/aenm.201902579
ZHANG F J, SONG J Z, CAI B, et al. Stabilizing electroluminescence color of blue perovskite LEDs via amine group doping [J]. Sci. Bull., 2021, 66(21): 2189-2198. doi: 10.1016/j.scib.2021.04.033http://dx.doi.org/10.1016/j.scib.2021.04.033
KIM Y H, KIM S, KAKEKHANI A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes [J]. Nat. Photon., 2021, 15(2): 148-155. doi: 10.1038/s41566-020-00732-4http://dx.doi.org/10.1038/s41566-020-00732-4
SUN C J, JIANG Y Z, CUI M H, et al. High-performance large-area quasi-2D perovskite light-emitting diodes [J]. Nat. Commun., 2021, 12(1): 2207-1-11. doi: 10.1038/s41467-021-22529-xhttp://dx.doi.org/10.1038/s41467-021-22529-x
ZHANG F J, CAI B, SONG J Z, et al. Efficient blue perovskite light-emitting diodes boosted by 2D/3D energy cascade channels [J]. Adv. Funct. Mater., 2020, 30(27): 2001732-1-11. doi: 10.1002/adfm.202001732http://dx.doi.org/10.1002/adfm.202001732
KONG L M, ZHANG X Y, LI Y G, et al. Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices [J]. Nat. Commun., 2021, 12(1): 1246-1-8. doi: 10.1038/s41467-021-21522-8http://dx.doi.org/10.1038/s41467-021-21522-8
XING J, ZHAO Y B, ASKERKA M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes [J]. Nat. Commun., 2018, 9(1): 3541-1-8. doi: 10.1038/s41467-018-05909-8http://dx.doi.org/10.1038/s41467-018-05909-8
0
浏览量
146
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构