浏览全部资源
扫码关注微信
1.郑州大学物理学院 材料物理教育部重点实验室, 河南 郑州 450052
2.河南超威光电科技有限公司, 河南 郑州 450001
[ "姬心震(1997-),男,河北沧州人,博士研究生,2022年于郑州大学获得硕士学位,主要从事非铅金属卤化物钙钛矿材料及其在电致发光二极管中应用的研究。E-mail: 1437640144@qq. com" ]
[ "史志锋(1987-),男,河南商丘人,博士,教授,博士生导师,2015年于吉林大学获得博士学位,主要从事新型半导体发光材料的合成、光物理及其光电器件应用的研究。 E-mail: shizf@zzu.edu.cn" ]
纸质出版日期:2023-03-05,
收稿日期:2022-12-22,
修回日期:2023-01-10,
移动端阅览
姬心震,马壮壮,田世超等.混合反溶剂法制备CsCu2I3纳米晶薄膜及其发光器件应用[J].发光学报,2023,44(03):559-568.
JI Xinzhen,MA Zhuangzhuang,TIAN Shichao,et al.Synthesis of CsCu2I3 Nanocrystalline Films by Mixed Antisolvent Strategy for Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(03):559-568.
姬心震,马壮壮,田世超等.混合反溶剂法制备CsCu2I3纳米晶薄膜及其发光器件应用[J].发光学报,2023,44(03):559-568. DOI: 10.37188/CJL.20220424.
JI Xinzhen,MA Zhuangzhuang,TIAN Shichao,et al.Synthesis of CsCu2I3 Nanocrystalline Films by Mixed Antisolvent Strategy for Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(03):559-568. DOI: 10.37188/CJL.20220424.
近年来,新兴的三元铜基卤化物(CsCu
2
I
3
)材料由于具有高荧光量子产率、环保无毒、环境稳定、成本低廉等诸多优点,在环保型发光二极管(LED)中的应用备受瞩目。然而,由于难以控制的结晶动力学,制备高质量的CsCu
2
I
3
发光层薄膜仍是一个巨大的挑战,这限制了LED器件性能的进一步提升。本文通过使用甲苯与甲醇混合溶剂作为反溶剂来增强反溶剂的钉扎效应,增加CsCu
2
I
3
晶体的成核密度,降低薄膜的晶粒尺寸,进而形成了光滑、致密的CsCu
2
I
3
纳米晶薄膜。此外,混合反溶剂策略可以有效增强辐射复合效率,显著提高CsCu
2
I
3
薄膜的发光性能,相比对照样品(只使用甲苯),混合反溶剂法所制备薄膜的荧光量子产率(PLQY)增加了1.5倍,激子束缚能从~201.6 meV提高至~234.5 meV。最终,相比对照器件,基于混合反溶剂策略的CsCu
2
I
3
基LED的最大亮度和最高外量子效率分别提高了5.5倍和1.6倍。本工作的研究结果不仅有助于加深对CsCu
2
I
3
薄膜制备过程中结晶规律的理解,而且有助于进一步推动基于CsCu
2
I
3
环境友好型LED器件性能的提升。
Recently, the emerging ternary copper-based halide (CsCu
2
I
3
) materials have attracted much attention in the application of environmentally friendly light-emitting diodes (LEDs) due to their high photoluminescence quantum yield (PLQY), non-toxicity, good stability, and low cost. However, the synthesis of high-quality CsCu
2
I
3
light-emitting films is still a great challenge due to the ungovernable crystallization dynamics of the CsCu
2
I
3
, which limits the further improvement of device performance. Here, by using a mixed solvent of toluene and methanol as an antisolvent to improve the pinning effect from the antisolvent, increasing the nucleation density of CsCu
2
I
3
crystals, and reducing the grain size of the films, a smooth and dense CsCu
2
I
3
nanocrystalline film was formed. Moreover, the mixed antisolvent strategy can effectively enhance the radiative recombination efficiency and significantly improve the PL properties of the CsCu
2
I
3
films. Compared with the control sample(only using toluene), the PLQY of the films prepared by the mixed antisolvent method is increased by 1.5 times, and the exciton binding energy was increased from ~201.6 meV to ~234.5 meV. Finally, the maximum luminance and the external quantum efficiency of the CsCu
2
I
3
LED based on the mixed antisolvent strategy were enhanced by 5.5 times and 1.6 times compared with the control device, respectively. The results of this work are not only conducive to deepening the understanding of crystallization laws during the preparation of CsCu
2
I
3
films, but also help to further promote the device performance of CsCu
2
I
3
-based environmentally friendly LEDs.
CsCu2I3纳米晶薄膜反溶剂黄光LED
CsCu2I3nanocrystalline filmsanti-solventyellow LED
CAO Y, WANG N N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures [J]. Nature, 2018, 562(7726): 249-253. doi: 10.1038/s41586-018-0576-2http://dx.doi.org/10.1038/s41586-018-0576-2
LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent [J]. Nature, 2018, 562(7726): 245-248. doi: 10.1038/s41586-018-0575-3http://dx.doi.org/10.1038/s41586-018-0575-3
CHIBA T, HAYASHI Y, EBE H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices [J]. Nat. Photonics, 2018, 12(11): 681-687. doi: 10.1038/s41566-018-0260-yhttp://dx.doi.org/10.1038/s41566-018-0260-y
江风益, 刘军林, 张建立, 等. 半导体黄光发光二极管新材料新器件新设备 [J]. 物理学报, 2019, 68(16): 168503-1-9. doi: 10.7498/aps.68.20191044http://dx.doi.org/10.7498/aps.68.20191044
JIANG F Y, LIU J L, ZHANG J L, et al. Semiconductor yellow light-emitting diodes [J]. Acta Phys. Sinica, 2019, 68(16): 168503-1-9. (in Chinese). doi: 10.7498/aps.68.20191044http://dx.doi.org/10.7498/aps.68.20191044
徐海英, 刘茂生, 姜明明, 等. 单根镓掺杂氧化锌微米线异质结基高亮黄光发光二极管 [J]. 发光学报, 2022, 43(8): 1165-1174. doi: 10.37188/CJL.20220171http://dx.doi.org/10.37188/CJL.20220171
XU H Y, LIU M S, JIANG M M, et al. High-brightness yellow light-emitting diode in a single Ga-doped ZnO∶Ga microwire heterojunction [J]. Chin. J. Lumin., 2022, 43(8): 1165-1174. (in Chinese). doi: 10.37188/CJL.20220171http://dx.doi.org/10.37188/CJL.20220171
KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals [J]. Science, 2017, 358(6364): 745-750. doi: 10.1126/science.aam7093http://dx.doi.org/10.1126/science.aam7093
VASHISHTHA P, HALPERT J E. Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes [J]. Chem. Mater., 2017, 29(14): 5965-5973. doi: 10.1021/acs.chemmater.7b01609http://dx.doi.org/10.1021/acs.chemmater.7b01609
王猛, 马壮壮, 陈旭, 等. 无铅铜基卤化物Rb2CuBr3的合成与发光特性 [J]. 液晶与显示, 2021, 36(1): 134-140. doi: 10.37188/cjlcd.2020-0249http://dx.doi.org/10.37188/cjlcd.2020-0249
WANG M, MA Z Z, CHEN X, et al. Synthesis and photoluminescence properties of lead-free copper-based halide Rb2CuBr3 [J]. Chin. J. Liq. Cryst. Disp., 2021, 36(1): 134-140. (in Chinese). doi: 10.37188/cjlcd.2020-0249http://dx.doi.org/10.37188/cjlcd.2020-0249
LIU N, ZHAO X, XIA M L, et al. Light-emitting diodes based on all-inorganic copper halide perovskite with self-trapped excitons [J]. J. Semicond, 2020, 41(5): 052204-1-5. doi: 10.1088/1674-4926/41/5/052204http://dx.doi.org/10.1088/1674-4926/41/5/052204
MA Z Z, SHI Z F, QIN C C, et al. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons [J]. ACS Nano, 2020, 14(4): 4475-4486. doi: 10.1021/acsnano.9b10148http://dx.doi.org/10.1021/acsnano.9b10148
CHEN H, ZHU L, XUE C, et al. Efficient and bright warm-white electroluminescence from lead-free metal halides [J]. Nat. Commun., 2021, 12(1): 1421-1-7. doi: 10.1038/s41467-021-21638-xhttp://dx.doi.org/10.1038/s41467-021-21638-x
CHO H, JEONG S H, PARK M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes [J]. Science, 2015, 350(6265): 1222-1225. doi: 10.1126/science.aad1818http://dx.doi.org/10.1126/science.aad1818
ZHANG Y W, DIAO Z L, CHEN J Y, et al. Morphology optimization of perovskite films for efficient sky-blue light emitting diodes via a novel green anti-solvent dimethyl carbonate [J]. J. Mater. Chem. C, 2021, 9(28): 8939-8946. doi: 10.1039/D1TC01805Ahttp://dx.doi.org/10.1039/D1TC01805A
REICHARDT C. Empirical parameters of the polarity of solvents [J]. Angew. Chem. Int. Ed., 1965, 4(1): 29-40. doi: 10.1002/anie.196500291http://dx.doi.org/10.1002/anie.196500291
PARK M H, JEONG S H, SEO H K, et al. Unravelling additive-based nanocrystal pinning for high efficiency organic-inorganic halide perovskite light-emitting diodes [J]. Nano Energy, 2017, 42: 157-165. doi: 10.1016/j.nanoen.2017.10.012http://dx.doi.org/10.1016/j.nanoen.2017.10.012
HANSEN C M. Hansen Solubility Parameters: A User's Handbook [M]. Boca Raton: CRC Press, 2007. doi: 10.1201/9781420006834.ch15http://dx.doi.org/10.1201/9781420006834.ch15
PAEK S, SCHOUWINK P, ATHANASOPOULOU E N, et al. From nano-to micrometer scale: the role of antisolvent treatment on high performance perovskite solar cells [J]. Chem. Mater., 2017, 29(8): 3490-3498. doi: 10.1021/acs.chemmater.6b05353http://dx.doi.org/10.1021/acs.chemmater.6b05353
WANG L T, MA Z Z, ZHANG F, et al. Stable down-conversion white light-emitting devices based on highly luminescent copper halides synthesized at room temperature [J]. J. Mater. Chem. C, 2021, 9(19): 6151-6159. doi: 10.1039/D1TC01037Ahttp://dx.doi.org/10.1039/D1TC01037A
SHI Y F, WU W, DONG H, et al. A strategy for architecture design of crystalline perovskite light-emitting diodes with high performance [J]. Adv. Mater., 2018, 30(25): 1800251-1-10. doi: 10.1002/adma.201800251http://dx.doi.org/10.1002/adma.201800251
蔡嫦芳, 孟秀清, 吴峰民, 等. 电沉积温度对碘化亚铜薄膜光学性质的影响 [J]. 发光学报, 2013, 34(6): 721-726. doi: 10.3788/fgxb20133406.0721http://dx.doi.org/10.3788/fgxb20133406.0721
CAI C F, MENG X Q, WU F M, et al. Influence of deposition temperature on the optical properties of CuI thin films [J]. Chin. J. Lumin., 2013, 34(6): 721-726. (in Chinese). doi: 10.3788/fgxb20133406.0721http://dx.doi.org/10.3788/fgxb20133406.0721
ZHANG F, LIANG W Q, WANG L T, et al. Moisture-induced reversible phase conversion of cesium copper iodine nanocrystals enables advanced anti-counterfeiting [J]. Adv. Funct. Mater., 2021, 31(47): 2105771-1-10. doi: 10.1002/adfm.202105771http://dx.doi.org/10.1002/adfm.202105771
YAN J J, MA J L, ZHANG M Y, et al. Dual-source vapor-processed blue-emissive cesium copper iodine microplatelets with high crystallinity and stability [J]. J. Mater. Chem. C, 2021, 9(37): 12535-12544. doi: 10.1039/d1tc03578ahttp://dx.doi.org/10.1039/d1tc03578a
LUO J J, WANG X M, LI S R, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites [J]. Nature, 2018, 563(7732): 541-545. doi: 10.1038/s41586-018-0691-0http://dx.doi.org/10.1038/s41586-018-0691-0
DEY P, PAUL J, BYLSMA J, et al. Origin of the temperature dependence of the band gap of PbS and PbSe quantum dots [J]. Solid State Commun., 2013, 165: 49-54. doi: 10.1016/j.ssc.2013.04.022http://dx.doi.org/10.1016/j.ssc.2013.04.022
JIANG D S, JUNG H, PLOOG K. Temperature dependence of photoluminescence from GaAs single and multiple quantum-well heterostructures grown by molecular-beam epitaxy [J]. J. Appl. Phys., 1988, 64(3): 1371-1377. doi: 10.1063/1.341862http://dx.doi.org/10.1063/1.341862
MA Z Z, SHI Z F, WANG L T, et al. Water-induced fluorescence enhancement of lead-free cesium bismuth halide quantum dots by 130% for stable white light-emitting devices [J]. Nanoscale, 2020, 12(6): 3637-3645. doi: 10.1039/c9nr10075jhttp://dx.doi.org/10.1039/c9nr10075j
YUAN S, WANG Z K, ZHUO M P, et al. Self-assembled high quality CsPbBr3 quantum dot films toward highly efficient light-emitting diodes [J]. ACS Nano, 2018, 12(9): 9541-9548. doi: 10.1021/acsnano.8b05185http://dx.doi.org/10.1021/acsnano.8b05185
皮慧慧, 李国辉, 周博林, 等. 高效率钙钛矿量子点发光二极管研究进展 [J]. 发光学报, 2021, 42(5): 650-667. doi: 10.37188/CJL.20200406http://dx.doi.org/10.37188/CJL.20200406
PI H H, LI G H, ZHOU B L, et al. Progress of high-efficiency perovskite quantum dot light-emitting diodes [J]. Chin. J. Lumin., 2021, 42(5): 650-667. (in Chinese). doi: 10.37188/CJL.20200406http://dx.doi.org/10.37188/CJL.20200406
袁豪, 孔令媚, 王林, 等. 三氟乙酸盐诱导的光谱稳定的蓝光钙钛矿发光二极管 [J]. 液晶与显示, 2021, 36(1): 123-133. doi: 10.37188/CJLCD.2020-0286http://dx.doi.org/10.37188/CJLCD.2020-0286
YUAN H, KONG L M, WANG L, et al. Highly stable blue perovskite light-emitting diodes induced by trifluoroacetate [J]. Chin. J. Liq. Cryst. Disp., 2021, 36(1): 123-133. (in Chinese). doi: 10.37188/CJLCD.2020-0286http://dx.doi.org/10.37188/CJLCD.2020-0286
LU M, ZHANG Y, WANG S X, et al. Metal halide perovskite light-emitting devices: promising technology for next-generation displays [J]. Adv. Funct. Mater., 2019, 29(30): 1902008-1-35. doi: 10.1002/adfm.201902008http://dx.doi.org/10.1002/adfm.201902008
PAN G C, BAI X, SHEN X Y, et al. Bright red YCl3-promoted CsPbI3 perovskite nanorods towards efficient light-emitting diode [J]. Nano Energy, 2021, 81: 105615-1-8. doi: 10.1016/j.nanoen.2020.105615http://dx.doi.org/10.1016/j.nanoen.2020.105615
0
浏览量
281
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构