浏览全部资源
扫码关注微信
1.天津大学 化工学院, 化学工程联合国家重点实验室, 天津 300350
2.深圳大学 材料学院, 广东 深圳 518060
3.河北省地质实验测试中心, 河北 保定 071051
4.Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
[ "吕旭晨(1998-),男,河北保定人,硕士研究生,2020年于天津大学获得学士学位,主要从事有机荧光传感材料的合成与检测性质的研究。E⁃mail: lvxuchen123@tju. edu. cn " ]
[ "路琳(1994-),女,山东聊城人,博士后,2021年于华南理工大学获得博士学位,主要从事刺激响应聚集诱导发光材料及其应用的研究。E⁃mail: lulinxyz@126.com " ]
[ "王富民(1970-),男,河北任丘人,博士,教授,1997年于天津大学获得博士学位,主要从事反应工程和光催化新材料等的研究。 Email: wangfumin@tju.edu.cn" ]
[ "任相魁(1980-),男,河北邢台人,博士,教授,2010年于南开大学获得博士学位,主要从事小分子及高分子材料的聚集态结构和光学性质的研究。E⁃mail: renxiangkui@tju. edu. cn" ]
纸质出版日期:2023-05-05,
收稿日期:2022-12-21,
修回日期:2022-12-25,
扫 描 看 全 文
吕旭晨,路琳,黄汉军等.用于快速检测苯胺的新型氰基苯乙烯荧光探针[J].发光学报,2023,44(05):912-920.
LYU Xuchen,LU Lin,HUANG Hanjun,et al.A Novel Cyanostilbene-based Fluorescent Probe for Rapid Detection of Aniline[J].Chinese Journal of Luminescence,2023,44(05):912-920.
吕旭晨,路琳,黄汉军等.用于快速检测苯胺的新型氰基苯乙烯荧光探针[J].发光学报,2023,44(05):912-920. DOI: 10.37188/CJL.20220423.
LYU Xuchen,LU Lin,HUANG Hanjun,et al.A Novel Cyanostilbene-based Fluorescent Probe for Rapid Detection of Aniline[J].Chinese Journal of Luminescence,2023,44(05):912-920. DOI: 10.37188/CJL.20220423.
苯胺是一种使用广泛但具有高毒性的化学原料,对环境安全和人类健康有巨大的潜在威胁。因此,对苯胺的检测具有重要的应用价值。本文设计并合成了一种可对苯胺进行选择性检测的氰基二苯乙烯衍生物(CN⁃DBE)荧光探针材料。通过光致发光光谱和数值模拟等方法对CN⁃DBE的聚集诱导发光性质、传感性能和检测机理进行了详细研究。结果表明,基于光诱导电子转移机理,CN⁃DBE可实现对苯胺的高选择性、定量、快速检测。此外,利用浸渍法制备了相应的CN⁃DBE试纸,可实现对苯胺的可视化检测,提供了一种廉价且简单的苯胺泄漏检测方法。
Aniline sensing is of great societal implications, as aniline is a crucial chemical raw material but with high toxicity, processing with huge impacts on environment safety and human health. Herein, a novel cyanostilbene derivative (CN-DBE) was designed and synthesized as selective fluorescent probe material for aniline detection. Its aggregation-induced emission property, sensing property and detection mechanism were elucidated by photoluminescence spectra and numerical simulation. The results reveal that CN-DBE possesses high selectivity, quantitative and rapid detection ability to aniline due to the electron transfer mechanism. Moreover, the CN-DBE compound can also enable the fabrication of test strips, which provide a cheap and simple way to detect aniline leakage.
荧光传感器氰基二苯乙烯聚集诱导发光苯胺快速检测光诱导电子转移
fluorescence sensorcyanostilbeneaggregation-induced emissionanilinerapid detectionphoto⁃induced electron transfer
TIŠMA M, ŠALIĆ A, PLANINIĆ M, et al. Production, characterisation and immobilization of laccase for an efficient aniline-based dye decolourization [J]. J. Water Process Eng., 2020, 36: 101327. doi: 10.1016/j.jwpe.2020.101327http://dx.doi.org/10.1016/j.jwpe.2020.101327
BAFANA A, DEVI S S, CHAKRABARTI T. Azo dyes: past, present and the future [J]. Environ. Rev., 2011, 19(NA): 350-371. doi: 10.1139/a11-018http://dx.doi.org/10.1139/a11-018
JAGADEESH R V, SURKUS A E, JUNGE H, et al. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines [J]. Science, 2013, 342(6162): 1073-1076. doi: 10.1126/science.1242005http://dx.doi.org/10.1126/science.1242005
GRIRRANE A, CORMA A, GARCIA H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics [J]. Science, 2008, 322(5908): 1661-1664. doi: 10.1126/science.1166401http://dx.doi.org/10.1126/science.1166401
KOVACIC P, SOMANATHAN R.Novel, unifying mechanism for aromatic primary-amines(therapeutics, carcinogens and toxins): electron transfer, reactive oxygen species, oxidative stress and metabolites [J]. MedChemComm, 2011, 2(2): 106-112. doi: 10.1039/c0md00233jhttp://dx.doi.org/10.1039/c0md00233j
XU H Y, HEINZE T M, PAINE D D, et al. Sudan azo dyes and Para Red degradation by prevalent bacteria of the human gastrointestinal tract [J]. Anaerobe, 2010, 16(2): 114-119. doi: 10.1016/j.anaerobe.2009.06.007http://dx.doi.org/10.1016/j.anaerobe.2009.06.007
ZHANG Y H, WANG C N, GONG F L, et al. Ultrathin agaric-like ZnO with Pd dopant for aniline sensor and DFT investigation [J]. J. Hazard. Mater., 2020, 388: 122069-1-10. doi: 10.1016/j.jhazmat.2020.122069http://dx.doi.org/10.1016/j.jhazmat.2020.122069
ZHANG T T, JIANG J Y, WANG Y H. Green route for the preparation of p-aminophenol from nitrobenzene by catalytic hydrogenation in pressurized CO2/H2O system [J]. Org. Process Res. Dev., 2015, 19(12): 2050-2054. doi: 10.1021/acs.oprd.5b00307http://dx.doi.org/10.1021/acs.oprd.5b00307
QUAN Z T, XIE G F, PENG Q, et al. Determining eight biogenic amines in surface water using high-performance liquid chromatography-tandem mass spectrometry [J]. Pol. J. Environ. Stud., 2016, 25(4): 1669-1673. doi: 10.15244/pjoes/62096http://dx.doi.org/10.15244/pjoes/62096
STILLWELL W G, BRYANT M S, WISHNOK J S. GC/MS analysis of biologically important aromatic amines. Application to human dosimetry [J]. Biomed. Environ. Mass Spectrom., 1987, 14(5): 221-227. doi: 10.1002/bms.1200140505http://dx.doi.org/10.1002/bms.1200140505
ZHANG Y B, PENG C, MA X J, et al. Fluorescent and photoconductive nanoribbons as a dual-mode sensor for selective discrimination of alkyl amines versus aromatic amines [J]. Chem. Commun., 2015, 51(81): 15004-15007. doi: 10.1039/c5cc05382jhttp://dx.doi.org/10.1039/c5cc05382j
PANDEY S, NANDA K K. Au nanocomposite based chemiresistive ammonia sensor for health monitoring [J]. ACS Sens., 2016, 1(1): 55-62. doi: 10.1021/acssensors.5b00013http://dx.doi.org/10.1021/acssensors.5b00013
XIE Z G, MA L Q, DEKRAFFT K E, et al. Porous phosphorescent coordination polymers for oxygen sensing [J]. J. Am. Chem. Soc., 2010, 132(3): 922-923. doi: 10.1021/ja909629fhttp://dx.doi.org/10.1021/ja909629f
XU P C, LI X X, YU H T, et al. Advanced nanoporous materials for micro-gravimetric sensing to trace-level bio/chemical molecules [J]. Sensors, 2014, 14(10): 19023-19056. doi: 10.3390/s141019023http://dx.doi.org/10.3390/s141019023
SNOW E S, PERKINS F K, HOUSER E J, et al. Chemical detection with a single-walled carbon nanotube capacitor [J]. Science, 2005, 307(5717): 1942-1945. doi: 10.1126/science.1109128http://dx.doi.org/10.1126/science.1109128
KAUSHIK A, KUMAR R, ARYA S K, et al. Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring [J]. Chem. Rev., 2015, 115(11): 4571-4606. doi: 10.1021/cr400659hhttp://dx.doi.org/10.1021/cr400659h
BARSAN N, KOZIEJ D, WEIMAR U. Metal oxide-based gas sensor research: how to? [J]. Sens. Actuators B Chem., 2007, 121(1): 18-35. doi: 10.1016/j.snb.2006.09.047http://dx.doi.org/10.1016/j.snb.2006.09.047
LIU M L, CHEN B B, LI C M, et al. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications [J]. Green Chem., 2019, 21(3): 449-471. doi: 10.1039/c8gc02736fhttp://dx.doi.org/10.1039/c8gc02736f
ZHAO Y Q, LIU X G, YANG Y Z, et al. Carbon dots: from intense absorption in visible range to excitation-independent and excitation-dependent photoluminescence [J]. Fuller. Nanotub. Carbon Nanostruct., 2015, 23(11): 922-929. doi: 10.1080/1536383x.2015.1018413http://dx.doi.org/10.1080/1536383x.2015.1018413
GAO M, TANG B Z. Fluorescent sensors based on aggregation-induced emission: recent advances and perspectives [J]. ACS Sens., 2017, 2(10): 1382-1399. doi: 10.1021/acssensors.7b00551http://dx.doi.org/10.1021/acssensors.7b00551
MEI J, LEUNG N L C, KWOK R T K, et al. Aggregation-induced emission: together we shine, united we soar! [J]. Chem. Rev., 2015, 115(21): 11718-11940. doi: 10.1021/acs.chemrev.5b00263http://dx.doi.org/10.1021/acs.chemrev.5b00263
AN B K, KWON S K, JUNG S D, et al. Enhanced emission and its switching in fluorescent organic nanoparticles [J]. J. Am. Chem. Soc., 2002, 124(48): 14410-14415. doi: 10.1021/ja0269082http://dx.doi.org/10.1021/ja0269082
张丹, 刘婕, 石栋, 等. 基于硅氧烷修饰的苝二酰亚胺氟离子荧光传感器 [J]. 发光学报, 2021, 42(6): 855-862. doi: 10.37188/cjl.20210068http://dx.doi.org/10.37188/cjl.20210068
ZHANG D, LIU J, SHI D, et al. Fluorescent sensor for fluoride ions based on perylene diimide tethered with siloxane moieties [J]. Chin. J. Lumin., 2021, 42(6): 855-862. (in Chinese). doi: 10.37188/cjl.20210068http://dx.doi.org/10.37188/cjl.20210068
LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J]. Chem. Commun., 2001, (18): 1740-1741. doi: 10.1039/b105159hhttp://dx.doi.org/10.1039/b105159h
HONG Y N, LAM J W Y, TANG B Z. Aggregation-induced emission [J]. Chem. Soc. Rev., 2011, 40(11): 5361-5388. doi: 10.1039/c1cs15113dhttp://dx.doi.org/10.1039/c1cs15113d
LI J, WANG J X, LI H X, et al. Supramolecular materials based on AIE luminogens (AIEgens): construction and applications [J]. Chem. Soc. Rev., 2020, 49(4): 1144-1172. doi: 10.1039/c9cs00495ehttp://dx.doi.org/10.1039/c9cs00495e
LIU C Y, CHEN X R, CHEN H X, et al. Ultrafast luminescent light-up guest detection based on the lock of the host molecular vibration [J]. J. Am. Chem. Soc., 2020, 142(14): 6690-6697. doi: 10.1021/jacs.0c00368http://dx.doi.org/10.1021/jacs.0c00368
SHEN Y H, YAO K, LI H, et al. Strong CPL-active liquid crystal materials induced by intermolecular hydrogen-bonding interaction and a chirality induction mechanism [J]. Soft Matter, 2022, 18(3): 477-481. doi: 10.1039/d1sm01607ehttp://dx.doi.org/10.1039/d1sm01607e
CAO X J, LI W, LI J H, et al. Controlling the balance of photoluminescence and photothermal effect in cyanostilbene-based luminescent liquid crystals [J]. Chin. J. Chem., 2022, 40(8): 902-910. doi: 10.1002/cjoc.202100751http://dx.doi.org/10.1002/cjoc.202100751
CHEN S Y, PAI M H, LIOU G S. Effects of alkyl chain length and anion on the optical and electrochemical properties of AIE-active α-cyanostilbene-containing triphenylamine derivatives [J]. J. Mater. Chem. C, 2020, 8(22): 7454-7462. doi: 10.1039/d0tc00683ahttp://dx.doi.org/10.1039/d0tc00683a
MARTÍNEZ-ABADÍA M, GIMÉNEZ R, ROS M B. Self-assembled α-cyanostilbenes for advanced functional materials [J]. Adv. Mater., 2018, 30(5): 1704161-1-39. doi: 10.1002/adma.201704161http://dx.doi.org/10.1002/adma.201704161
王嘉慧, 曾晓璇, 吴玥, 等. 具有pH响应性能的聚集诱导发光材料制备与表征 [J]. 发光学报, 2021, 42(3): 311-318. doi: 10.37188/cjl.20210020http://dx.doi.org/10.37188/cjl.20210020
WANG J H, ZENG X X, WU Y, et al. Synthesis and characterization of pH-responsive material with aggregation-induced emission property [J]. Chin. J. Lumin., 2021, 42(3): 311-318. (in Chinese). doi: 10.37188/cjl.20210020http://dx.doi.org/10.37188/cjl.20210020
DHOUN S, KAUR I, KAUR P, et al. Propargylated cyanostilbene based chemodosimeter for Pd2+ with application in biological fluids [J]. Dyes Pigm., 2017, 143: 361-367. doi: 10.1016/j.dyepig.2017.04.054http://dx.doi.org/10.1016/j.dyepig.2017.04.054
ZHU L L, ZHAO Y L. Cyanostilbene-based intelligent organic optoelectronic materials [J]. J. Mater. Chem. C, 2013, 1(6): 1059-1065. doi: 10.1039/c2tc00593jhttp://dx.doi.org/10.1039/c2tc00593j
LIM N Y, AHN J, WON M, et al. Novel cyanostilbene-based fluorescent chemoprobe for hydroxyl radicals and its two-photon bioimaging in living cells [J]. ACS Appl. Bio Mater., 2019, 2(2): 936-942. doi: 10.1021/acsabm.8b00796http://dx.doi.org/10.1021/acsabm.8b00796
DAHIWADKAR R, KUMAR H, KANVAH S. Detection of illicit GHB using AIE active fluorene containing α-Cyanostilbenes [J]. J. Photochem. Photobiol. A Chem., 2022, 427: 113844. doi: 10.1016/j.jphotochem.2022.113844http://dx.doi.org/10.1016/j.jphotochem.2022.113844
ZHAO R Y, ZHAO T P, JIANG X Q, et al. Thermoplastic high strain multishape memory polymer: side-chain polynorbornene with columnar liquid crystalline phase [J]. Adv. Mater., 2017, 29(12): 1605908-1-6. doi: 10.1002/adma.201605908http://dx.doi.org/10.1002/adma.201605908
0
浏览量
135
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构