浏览全部资源
扫码关注微信
1.中国科学院上海光学精密机械研究所 强场激光物理国家重点实验室, 上海 201800
2.国科大杭州高等研究院 物理与光电工程学院, 浙江 杭州 310024
3.中国科学院大学 材料与光电研究中心, 北京 100049
4.华中科技大学 光学与电子信息学院, 湖北 武汉 430074
[ "杜子孝(1998-),男,湖南张家界人,硕士研究生,2020年于华中科技大学获得学士学位,主要从事钙钛矿发光机理方向的研究。 E-mail: duzixiao@siom.ac.cn" ]
[ "杜海南(1989-),男,内蒙古包头人,博士研究生,2015年于四川大学获得硕士学位,主要从事新型发光材料与器件方向的研究。 E-mail: dhn-2008@163.com" ]
[ "刘征征(1991-),男,山东临沂人,博士,副研究员,2019年于中国科学院上海光学精密机械研究所获得博士学位,主要从事新型光电器件及发光物理机制的研究。 E-mail: liuzhengzheng@siom.ac.cn" ]
[ "杜鹃(1980-),女,山东潍坊人,博士,研究员,博士生导师,2007年于中国科学院上海光学精密机械研究所获得博士学位,主要从事超短脉冲激光与功能材料相互作用的研究。 E-mail: dujuan@mail.siom.ac.cn" ]
[ "冷雨欣(1975-),男,上海人,博士,研究员,博士生导师,2002年于中国科学院上海光学精密机械研究所获得博士学位,主要从事超强超短激光技术发展及其前沿重要应用等方面的 研究。 E-mail: lengyuxin@mail.siom.ac.cn" ]
纸质出版日期:2023-04-05,
收稿日期:2022-12-16,
修回日期:2023-01-04,
移动端阅览
杜子孝,杜海南,胡智萍等.Ruddlesden⁃Popper型准二维钙钛矿温度依赖发光光谱研究[J].发光学报,2023,44(04):569-578.
DU Zixiao,DU Hainan,HU Zhiping,et al.Temperature-dependent Luminescence Spectra of Ruddlesden-Popper Quasi-2D Perovskites[J].Chinese Journal of Luminescence,2023,44(04):569-578.
杜子孝,杜海南,胡智萍等.Ruddlesden⁃Popper型准二维钙钛矿温度依赖发光光谱研究[J].发光学报,2023,44(04):569-578. DOI: 10.37188/CJL.20220418.
DU Zixiao,DU Hainan,HU Zhiping,et al.Temperature-dependent Luminescence Spectra of Ruddlesden-Popper Quasi-2D Perovskites[J].Chinese Journal of Luminescence,2023,44(04):569-578. DOI: 10.37188/CJL.20220418.
准二维Ruddlesden⁃Popper(R⁃P)卤化物钙钛矿具有优越的光电特性,在太阳能电池、发光二极管、激光器等光电器件中受到广泛关注,但严重影响载流子的弛豫和传输特性的激子⁃声子之间的相互作用还未得到充分揭示。与广泛研究的三维钙钛矿结构相比,准二维钙钛矿存在天然形成的量子阱结构,具有更大的激子结合能,激子效应更加明显,但对其激子⁃声子相互作用的研究仍然较少。因此,我们通过溶液法制备了准二维R⁃P型钙钛矿(PEA)
2
Cs
n
-1
Pb
n
Br
3
n
+1
薄膜,其增益系数高达~1 090.62 cm
-1
,获得了低阈值(~12.48 μJ/cm
2
)的放大自发辐射。基于此,我们通过变温荧光光谱(77~300 K)和瞬态吸收光谱技术研究了(PEA)
2
Cs
n
-1
Pb
n
Br
3
n
+1
薄膜随温度变化的发光特性,以阐述其内部的激子⁃声子相互作用对其发光性能的影响。发现在低温域内(77~120 K),由激子⁃声子相互作用引起的带隙变化相对较弱,晶格热膨胀占主导地位;随着温度升高,激子⁃声子相互作用对带隙变化产生较大影响。另一方面,激子⁃声子相互作用会促使发光光谱线宽加宽,但我们在77~120 K的温度范围内观察到了反常线宽变窄现象,这归因于由局域化效应引起的多量子阱中的能量转移机制;直到120 K之后,激子⁃声子相互作用引起的谱线加宽才足以逆转这一趋势。本文对准二维钙钛矿的激子⁃声子相互作用的研究对于提高准二维钙钛矿光学性能及其发光应用具有指导价值。
The quasi-2D Ruddlesden-Popper(R-P) halide perovskite has been widely used in solar cells, light-emitting diodes, lasers and other optoelectronic devices due to its excellent photoelectric properties. However, the exciton-phonon interaction, which seriously affects the relaxation and transport characteristics of carriers, has not been fully revealed. Compared with the widely studied 3D perovskite structure, quasi 2D perovskite has a naturally formed quantum well structure with greater exciton binding energy and more obvious exciton effect. However, the exciton-phonon interaction of quasi 2D perovskite is still less studied. Therefore, a quasi-2D R-P perovskite film (PEA)
2
Cs
n
-1
Pb
n
Br
3
n
+1
has been prepared by solution method with a gain coefficient of ~1 090.62 cm
-1
and an amplified spontaneous emission of low threshold (~12.48 μJ/cm
2
). Based on this, we studied the luminescence properties of (PEA)
2
Cs
n
-1
Pb
n
Br
3
n
+1
film with temperature variation by using variable temperature fluorescence spectroscopy(77-300 K) and transient absorption spectroscopy, in order to elaborate the influence of exciton-phonon interaction on its luminescence properties. It was found that in the low temperature domain (77-120 K), The bandgap change caused by exciton-phonon interaction is relatively weak, and the lattice thermal expansion is dominant. With the increase of temperature, the exciton-phonon interaction has a great influence on the change of bandgap. On the other hand, the exciton-phonon interaction causes the line width of the luminescence spectrum to widen, but we observed the abnormal line width narrowing in the temperature range of 77-120 K, which is attributed to an energy transfer mechanism in the multi-quantum well caused by the localization effect. Until above 120 K, the line widening caused by the exciton-phonon interaction is sufficient to reverse this trend. In this paper, the exciton-phonon interaction of quasi 2D perovskite is of guiding value for improving the optical properties and luminescence applications of quasi 2D perovskite.
激子-声子相互作用准二维钙钛矿光谱加宽局域化效应
exciton-phonon interactionquasi-2D perovskitespectral broadeninglocalization effects
LIU X K, XU W D, BAI S, et al. Metal halide perovskites for light-emitting diodes [J]. Nat. Mater., 2021, 20(1): 10-21. doi: 10.1038/s41563-020-0784-7http://dx.doi.org/10.1038/s41563-020-0784-7
HU Z P, LIU Z Z, ZHAN Z J, et al. Advances in metal halide perovskite lasers: synthetic strategies, morphology control, and lasing emission [J]. Adv. Photon., 2021, 3(3): 034002. doi: 10.1117/1.ap.3.3.034002http://dx.doi.org/10.1117/1.ap.3.3.034002
ZHANG F, LU H P, TONG J H, et al. Advances in two-dimensional organic-inorganic hybrid perovskites [J]. Energy Environ. Sci., 2020, 13(4): 1154-1186. doi: 10.1039/c9ee03757hhttp://dx.doi.org/10.1039/c9ee03757h
TSAI H, NIE W Y, BLANCON J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells [J]. Nature, 2016, 536(7616): 312-316. doi: 10.1038/nature18306http://dx.doi.org/10.1038/nature18306
HO K T, LEUNG S F, LI T Y, et al. Surface effect on 2D hybrid perovskite crystals: perovskites using an ethanolamine organic layer as an example [J]. Adv. Mater., 2018, 30(46): 1804372-1-7. doi: 10.1002/adma.201804372http://dx.doi.org/10.1002/adma.201804372
GAUTHRON K, LAURET J S, DOYENNETTE L, et al. Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite [J]. Opt. Express, 2010, 18(6): 5912-5919. doi: 10.1364/oe.18.005912http://dx.doi.org/10.1364/oe.18.005912
LIU Z Z, HU M C, DU J, et al. Subwavelength-polarized quasi-two-dimensional perovskite single-mode nanolaser [J]. ACS Nano, 2021, 15(4): 6900-6908. doi: 10.1021/acsnano.0c10647http://dx.doi.org/10.1021/acsnano.0c10647
WANG N N, CHENG L, GE R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells [J]. Nat. Photonics, 2016, 10(11): 699-704. doi: 10.1038/nphoton.2016.185http://dx.doi.org/10.1038/nphoton.2016.185
YUAN M J, QUAN L N, COMIN R, et al. Perovskite energy funnels for efficient light-emitting diodes [J]. Nat. Nanotechnol., 2016, 11(10): 872-877. doi: 10.1038/nnano.2016.110http://dx.doi.org/10.1038/nnano.2016.110
HUANG S H, LIU N, LIU Z Z, et al. Enhanced amplified spontaneous emission in quasi-2D perovskite by facilitating energy transfer [J]. ACS Appl. Mater. Interfaces, 2022, 14(29): 33842-33849. doi: 10.1021/acsami.2c07633http://dx.doi.org/10.1021/acsami.2c07633
LI M L, GAO Q G, LIU P, et al. Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites [J]. Adv. Funct. Mater., 2018, 28(17): 1707006-1-9. doi: 10.1002/adfm.201707006http://dx.doi.org/10.1002/adfm.201707006
汪俊,周奉献,李骞,等. 准二维铅基钙钛矿微纳激光器 [J]. 发光学报,2022, 43(11): 1645-1662. doi: 10.37188/CJL.20220179http://dx.doi.org/10.37188/CJL.20220179
WANG J, ZHOU F X, LI Q, et al. Quasi-2D lead halide perovskites for micro- and nanolasers [J]. Chin. J. Lumin., 2022, 43(11): 1645-1662. (in English). doi: 10.37188/CJL.20220179http://dx.doi.org/10.37188/CJL.20220179
CHO K, YAMADA T, TAHARA H, et al. Luminescence fine structures in single lead halide perovskite nanocrystals: size dependence of the exciton-phonon coupling [J]. Nano Lett., 2021, 21(17): 7206-7212. doi: 10.1021/acs.nanolett.1c02122http://dx.doi.org/10.1021/acs.nanolett.1c02122
SARAN R, HEUER-JUNGEMANN A, KANARAS A G, et al. Giant bandgap renormalization and exciton-phonon scattering in perovskite nanocrystals [J]. Adv. Opt. Mater., 2017, 5(17): 1700231. doi: 10.1002/adom.201700231http://dx.doi.org/10.1002/adom.201700231
WANG S, MA J Q, LI W C, et al. Temperature-dependent band gap in two-dimensional perovskites: thermal expansion interaction and electron-phonon interaction [J]. J. Phys. Chem. Lett., 2019, 10(10): 2546-2553. doi: 10.1021/acs.jpclett.9b01011http://dx.doi.org/10.1021/acs.jpclett.9b01011
HONG X, ISHIHARA T, NURMIKKO A V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors [J]. Phys. Rev. B, 1992, 45(12): 6961-6964. doi: 10.1103/physrevb.45.6961http://dx.doi.org/10.1103/physrevb.45.6961
AVOURIS P, FREITAG M, PEREBEINOS V. Carbon-nanotube photonics and optoelectronics [J]. Nat. Photonics, 2008, 2(6): 341-350. doi: 10.1038/nphoton.2008.94http://dx.doi.org/10.1038/nphoton.2008.94
XU Y Q, CHEN Q, ZHANG C F, et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers [J]. J. Am. Chem. Soc., 2016, 138(11): 3761-3768. doi: 10.1021/jacs.5b12662http://dx.doi.org/10.1021/jacs.5b12662
SHAKLEE K L, LEHENY R F. Direct determination of optical gain in semiconductor crystals [J]. Appl. Phys. Lett., 1971, 18(11): 475-477. doi: 10.1063/1.1653501http://dx.doi.org/10.1063/1.1653501
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence [J]. J. Am. Chem. Soc., 2016, 138(43): 14202-14205. doi: 10.1021/jacs.6b08900http://dx.doi.org/10.1021/jacs.6b08900
VELDHUIS S A, TAY Y K E, BRUNO A, et al. Benzyl alcohol-treated CH3NH3PbBr3 nanocrystals exhibiting high luminescence, stability, and ultralow amplified spontaneous emission thresholds [J]. Nano Lett., 2017, 17(12): 7424-7432. doi: 10.1021/acs.nanolett.7b03272http://dx.doi.org/10.1021/acs.nanolett.7b03272
ZHANG H H, LIAO Q, WU Y S, et al. 2D Ruddlesden-Popper perovskites microring laser array [J]. Adv. Mater., 2018, 30(15): 1706186-1-8. doi: 10.1002/adma.201706186http://dx.doi.org/10.1002/adma.201706186
PROTESESCU L, YAKUNIN S, KUMAR S, et al. Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals [J]. ACS Nano, 2017, 11(3): 3119-3134. doi: 10.1021/acsnano.7b00116http://dx.doi.org/10.1021/acsnano.7b00116
OHTOMO A, TAMURA K, KAWASAKI M, et al. Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices [J]. Appl. Phys. Lett., 2000, 77(14): 2204-2206. doi: 10.1063/1.1315340http://dx.doi.org/10.1063/1.1315340
KAZES M, ORON D, SHWEKY I, et al. Temperature dependence of optical gain in CdSe/ZnS quantum rods [J]. J. Phys. Chem. C, 2007, 111: 7898-7905. doi: 10.1021/jp070075qhttp://dx.doi.org/10.1021/jp070075q
ZHANG X B, TALIERCIO T, KOLLIAKOS S, et al. Influence of electron-phonon interaction on the optical properties of Ⅲ nitride semiconductors [J]. J. Phys. Condens. Matter, 2001, 13: 7053-7074. doi: 10.1088/0953-8984/13/32/312http://dx.doi.org/10.1088/0953-8984/13/32/312
COLEMAN J J, YOUNG J D, GARG A. Semiconductor quantum dot lasers: a tutorial [J]. J. Lightw. Technol., 2011, 29(4): 499-510. doi: 10.1109/jlt.2010.2098849http://dx.doi.org/10.1109/jlt.2010.2098849
ASRYAN L V, LURYI S. Temperature-insensitive semiconductor quantum dot laser [J]. Solid State Electron., 2003, 47(2): 205-212. doi: 10.1016/s0038-1101(02)00196-xhttp://dx.doi.org/10.1016/s0038-1101(02)00196-x
HAN Q J, WU W Z, LIU W L, et al. Temperature-dependent photoluminescence of CsPbX3 nanocrystal films [J]. J. Lumin., 2018, 198: 350-366. doi: 10.1016/j.jlumin.2018.02.036http://dx.doi.org/10.1016/j.jlumin.2018.02.036
SUN S Y, SALIM T, MATHEWS N, et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells [J]. Energy Environ. Sci., 2014, 7(1): 399-407. doi: 10.1039/c3ee43161dhttp://dx.doi.org/10.1039/c3ee43161d
ZHANG Q, SU R, LIU X F, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets [J]. Adv. Funct. Mater., 2016, 26(34): 6238-6245. doi: 10.1002/adfm.201601690http://dx.doi.org/10.1002/adfm.201601690
WEI K, XU Z J, CHEN R Z, et al. Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots [J]. Opt. Lett., 2016, 41(16): 3821-3824. doi: 10.1364/ol.41.003821http://dx.doi.org/10.1364/ol.41.003821
WANG Y, YU D J, WANG Z, et al. Solution-grown CsPbBr3/Cs4PbBr6 perovskite nanocomposites: toward temperature-insensitive optical gain [J]. Small, 2017, 13(34): 1701587-1-8. doi: 10.1002/smll.201701587http://dx.doi.org/10.1002/smll.201701587
SWARNKAR A, CHULLIYIL R, RAVI V K, et al. Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots [J]. Angew. Chem. Int. Ed., 2015, 54(51): 15424-15428. doi: 10.1002/anie.201508276http://dx.doi.org/10.1002/anie.201508276
DIROLL B T, NEDELCU G, KOVALENKO M V, et al. High-temperature photoluminescence of CsPbX3(X=Cl, Br, I) nanocrystals [J]. Adv. Funct. Mater., 2017, 27(21): 1606750-1-7. doi: 10.1002/adfm.201606750http://dx.doi.org/10.1002/adfm.201606750
LEE J, KOTELES E S, VASSELL M O. Luminescence linewidths of excitons in GaAs quantum wells below 150 K [J]. Phys. Rev. B, 1986, 33(8): 5512-5516. doi: 10.1103/physrevb.33.5512http://dx.doi.org/10.1103/physrevb.33.5512
CHEN Y, KOTHIYAL G P, SINGH J, et al. Absorption and photoluminescence studies of the temperature dependence of exciton life time in lattice-matched and strained quantum well systems [J]. Superlattices Microstruct., 1987, 3(6): 657-664. doi: 10.1016/0749-6036(87)90195-9http://dx.doi.org/10.1016/0749-6036(87)90195-9
WANG H N, JI Z W, QU S, et al. Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells [J]. Opt. Express, 2012, 20(4): 3932-3940. doi: 10.1364/oe.20.003932http://dx.doi.org/10.1364/oe.20.003932
0
浏览量
413
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构