浏览全部资源
扫码关注微信
华南理工大学 发光材料与器件国家重点实验室, 广东省光纤激光材料与应用技术重点实验室, 广东 广州 510640
[ "贾延琪(1997-),男,河南安阳人,硕士研究生,2020年于河南工业大学获得学士学位,主要从事激光玻璃与器件的 研究。E⁃mail: 202020120083@mail.scut.edu.cn " ]
[ "肖永宝(1993-),男,重庆人,博士,2022年于华南理工大学获得博士学位,主要从事激光玻璃与光纤及光纤激光器的研究。Email: msxiaoyongbao@mail.scut.edu.cn" ]
纸质出版日期:2023-05-05,
收稿日期:2022-12-14,
修回日期:2023-01-03,
扫 描 看 全 文
贾延琪,董双丽,肖永宝.掺铥锗酸盐激光玻璃光谱特性定量计算与预测[J].发光学报,2023,44(05):889-897.
JIA Yanqi,DONG Shuangli,XIAO Yongbao.Quantitative Calculation and Prediction of Spectroscopic Properties of Thulium-doped Germanate Laser Glass[J].Chinese Journal of Luminescence,2023,44(05):889-897.
贾延琪,董双丽,肖永宝.掺铥锗酸盐激光玻璃光谱特性定量计算与预测[J].发光学报,2023,44(05):889-897. DOI: 10.37188/CJL.20220415.
JIA Yanqi,DONG Shuangli,XIAO Yongbao.Quantitative Calculation and Prediction of Spectroscopic Properties of Thulium-doped Germanate Laser Glass[J].Chinese Journal of Luminescence,2023,44(05):889-897. DOI: 10.37188/CJL.20220415.
掺稀土激光玻璃是光纤激光器的核心工作介质,如何定量计算预测激光玻璃的光学光谱特性是加快高性能激光玻璃研发的挑战之一。本文以掺铥(Tm
3+
)二元锗酸盐激光玻璃为例,将相图中的“一致熔融化合物”视为玻璃的组成/结构“基元”,基于掺Tm
3+
基元玻璃的物理和光谱性质的实验值利用杠杆规则计算预测了锗酸盐激光玻璃相应的性质,如密度、折射率、有效线宽、吸收/发射截面、辐射寿命、增益带宽等。结果表明,物理性质和光谱特性的预测值与实验值吻合度较高,预测误差绝对值分别小于4.61%和9.66%。此外,该方法能够准确预测掺Tm
3+
锗酸盐玻璃的物理性质和光谱特性随组分的变化趋势,包括线性规律和“锗反常”现象,有助于解析激光玻璃组成⁃结构⁃性质的内在关联。本研究有望为激光玻璃的性质预测和成分设计提供指导。
Rare-earth-doped laser glass is the key medium of fiber lasers. However, how to predict the spectroscopic properties quantitatively remains a challenge to accelerate the development of high-performance laser glass. Here we regard the nearest-neighboring congruently melting compound(CMC) as the component and structural “motif” of glass based on the phase diagram model and apply it to the Tm
3+
-doped binary germanate laser glass systems. The experimental properties of Tm
3+
-doped glassy CMCs are utilized to calculate and predict the physical and spectroscopic properties, such as density, refractive index, effective linewidth, absorption/emission cross-sections, radiation lifetime,
etc
., of germanate laser glass by utilizing the leverage rule. The results illustrate that the predicted physical and spectroscopic properties are in good agreement with the experimental values, with the maximum absolute errors of less than 4.61% and 9.66%, respectively. Moreover, the phase diagram approach can capture the trends of physical and spectroscopic properties as a function of composition, including the linearly or germanate-anomaly compositional dependence, which provides an opportunity to decipher the composition-structure-property relationships of laser glass. This study is expected to shed light on the property prediction and composition design of laser glass.
激光玻璃光谱特性定量预测相图模型
laser glassspectroscopic propertiesquantitative predictionphase diagram model
GENG J H, JIANG S B. Fiber lasers: the 2 μm market heats up [J]. Opt. Photonics News, 2014, 25(7): 34-41. doi: 10.1364/opn.25.7.000034http://dx.doi.org/10.1364/opn.25.7.000034
尹朋伟, 李彦潮, 赵文凯, 等. 中红外稀土掺杂碲酸盐玻璃和光纤 [J]. 发光学报, 2022, 43(11): 1705-1720. doi: 10.37188/CJL.20220263http://dx.doi.org/10.37188/CJL.20220263
YIN P W, LI Y C, ZHAO W K, et al. Mid-IR rare earth doped tellurite glass and optical fiber [J]. Chin. J. Lumin., 2022, 43(11): 1705-1720. (in Chinese). doi: 10.37188/CJL.20220263http://dx.doi.org/10.37188/CJL.20220263
WANG W C, ZHOU B, XU S H, et al. Recent advances in soft optical glass fiber and fiber lasers [J]. Prog. Mater. Sci., 2019, 101: 90-171. doi: 10.1016/j.pmatsci.2018.11.003http://dx.doi.org/10.1016/j.pmatsci.2018.11.003
TU L, TANG G W, QIAN Q, et al. Controllable structural tailoring for enhanced ~2 µm emission in heavily Tm3+-doped germanate glasses [J]. Opt. Lett., 2021, 46(2): 310-313. doi: 10.1364/ol.410912http://dx.doi.org/10.1364/ol.410912
董国平, 万天择, 吴敏波, 等. 玻璃基因工程在激光玻璃等光功能玻璃领域的研究进展 [J]. 激光与光电子学进展, 2022, 59(15): 1516002-1-15. doi: 10.3788/LOP202259.1516002http://dx.doi.org/10.3788/LOP202259.1516002
DONG G P, WAN T Z, WU M B, et al. Recent applications of glass genetic engineering in laser glasses and other advanced optical glasses [J]. Laser Optoelectron. Prog., 2022, 59(15): 1516002-1-15. (in Chinese). doi: 10.3788/LOP202259.1516002http://dx.doi.org/10.3788/LOP202259.1516002
WEBER M J. Handbook of Optical Materials [M]. Florida: CRC Press, 2002.
张丽艳, 李洪, 胡丽丽, 等. 玻璃成分-结构-性质的“基因结构”模拟法 [J]. 无机材料学报, 2019, 34(8): 885-892. doi: 10.15541/jim20180514http://dx.doi.org/10.15541/jim20180514
ZHANG L Y, LI H, HU L L, et al. Structure modeling of genes in glass: composition-structure-property approach [J]. J. Inorg. Mater., 2019, 34(8): 885-892. (in Chinese). doi: 10.15541/jim20180514http://dx.doi.org/10.15541/jim20180514
ZHANG L Y, LI H, HU L L. Statistical structure analysis of GeO2 modified Yb3+: phosphate glasses based on Raman and FTIR study [J]. J. Alloys Compd., 2017, 698: 103-113. doi: 10.1016/j.jallcom.2016.12.175http://dx.doi.org/10.1016/j.jallcom.2016.12.175
LIU W X, YAN S S, WANG Y J, et al. Composition-structure-property modeling for Nd3+ doped alkali-phosphate laser glass [J]. Opt. Mater., 2020, 102: 109778-1-8. doi: 10.1016/j.optmat.2020.109778http://dx.doi.org/10.1016/j.optmat.2020.109778
KONSTANTINIDIS M, LALLA E A, LOPEZ-REYES G, et al. Statistical learning for the estimation of Judd-Ofelt parameters: a case study of Er3+: doped tellurite glasses [J]. J. Lumin., 2021, 235: 118020-1-9. doi: 10.1016/j.jlumin.2021.118020http://dx.doi.org/10.1016/j.jlumin.2021.118020
ALHUSSAN A A, GAAFAR M S, ALHARBI M, et al. Prediction of the Judd-Ofelt parameters of Dy3+-doped lead borosilicate using artificial neural network [J]. Electronics, 2022, 11(7): 1045-1-18. doi: 10.3390/electronics11071045http://dx.doi.org/10.3390/electronics11071045
ABDERRAHMANE B. Judd-Ofelt Parameters: Bayesian Inference and Deep Learning Approach [D]. Ouargla: University of KASDI Merbah-Ouargla, 2021.
ZHANG Q Y, ZHANG W J, WANG W C, et al. Calculation of physical properties of glass via the phase diagram approach [J]. J. Non Cryst. Solids, 2017, 457: 36-43. doi: 10.1016/j.jnoncrysol.2016.11.005http://dx.doi.org/10.1016/j.jnoncrysol.2016.11.005
DONG S L, JIA Y Q, XIAO Y B, et al. Predicting and optimizing the physical and spectroscopic properties of phosphate laser glasses using a phase diagram approach [J]. J. Am. Ceram. Soc., 2023,106: 4116-4127. doi: 10.1111/jace.19065http://dx.doi.org/10.1111/jace.19065
DONG S L, JIA Y Q, JI Y, et al. Quantitatively predicting the optical and spectroscopic properties of Nd3+-doped laser glasses [J]. J. Am. Ceram. Soc., 2023, 106(2): 1001-1014. doi: 10.1111/jace.18837http://dx.doi.org/10.1111/jace.18837
JIANG Z H, ZHANG Q Y. The structure of glass: a phase equilibrium diagram approach [J]. Prog. Mater. Sci., 2014, 61: 144-215. doi: 10.1016/j.pmatsci.2013.12.001http://dx.doi.org/10.1016/j.pmatsci.2013.12.001
MURTHY M K, AGUAYO J. Studies in germanium oxide systems: Ⅱ, phase equilibria in the system Na2O-GeO2 [J]. J. Am. Ceram. Soc., 1964, 47(9): 444-447. doi: 10.1111/j.1151-2916.1964.tb14433.xhttp://dx.doi.org/10.1111/j.1151-2916.1964.tb14433.x
ZHANG W J, WANG W C, ZHANG Q Y, et al. New insights into the structure and physical properties of sodium and potassium germanate glass via the phase diagram approach [J]. J. Non. Cryst. Solids, 2017, 475: 108-115. doi: 10.1016/j.jnoncrysol.2017.09.013http://dx.doi.org/10.1016/j.jnoncrysol.2017.09.013
SHIRVINSKAYA A, GREBENSHCHIKOV R, TOROPOV N. Phase transitions in Ca2GeO4 [J]. Izv. Akad. Nauk. SSSR. Neorg. Mater., 1966, 2: 332.
GUHA J P. Phase equilibria in the system BaO-GeO2 [J]. J. Mater. Sci., 1979, 14(7): 1744-1748. doi: 10.1007/bf00569296http://dx.doi.org/10.1007/bf00569296
PIPES R S, SHELBY J E. Formation and properties of soda lime germanate glasses [J]. J. Non Cryst. Solids, 2021, 553: 120506-1-8. doi: 10.1016/j.jnoncrysol.2020.120506http://dx.doi.org/10.1016/j.jnoncrysol.2020.120506
HUANG S J, XIAO Y B, LIU J L, et al. Nd3+-doped antimony germanate glass for 1.06 μm fiber lasers [J]. J. Non.Cryst. Solids, 2019, 518: 10-17. doi: 10.1016/j.jnoncrysol.2019.05.008http://dx.doi.org/10.1016/j.jnoncrysol.2019.05.008
ALDERMAN O L G, HANNON A C, FELLER S, et al. The germanate anomaly in alkaline earth germanate glasses [J]. J. Phys. Chem. C, 2017, 121(17): 9462-9479. doi: 10.1021/acs.jpcc.6b12372http://dx.doi.org/10.1021/acs.jpcc.6b12372
HENDERSON G S, WANG H M. Germanium coordination and the germanate anomaly [J]. Eur. J. Mineral., 2002, 14(4): 733-744. doi: 10.1127/0935-1221/2002/0014-0733http://dx.doi.org/10.1127/0935-1221/2002/0014-0733
HENDERSON G S, FLEET M E. The structure of glasses along the Na2O-GeO2 join [J]. J. Non Cryst. Solids, 1991, 134(3): 259-269. doi: 10.1016/0022-3093(91)90384-ihttp://dx.doi.org/10.1016/0022-3093(91)90384-i
张庆礼,何伟,孙敦陆,等. Judd-Ofelt光谱分析理论 [J]. 光谱学与光谱分析, 2005(03): 329-333. doi: 10.3321/j.issn:1000-0593.2005.03.003http://dx.doi.org/10.3321/j.issn:1000-0593.2005.03.003
ZHANG Q L, HE W, SUN D L, et al. Judd-Ofelt spectral theory [J]. Spectrosc. Spect. Anal., 2005(03): 329-333. (in Chinese). doi: 10.3321/j.issn:1000-0593.2005.03.003http://dx.doi.org/10.3321/j.issn:1000-0593.2005.03.003
GOLDNER P. Accuracy of the Judd-Ofelt theory [J]. Mol. Phys., 2003, 101(7): 903-908. doi: 10.1080/0026897021000046735http://dx.doi.org/10.1080/0026897021000046735
尹民, 闻军, 段昌奎. 稀土离子激活发光材料中能级跃迁的选择定则 [J]. 发光学报, 2011, 32(7): 643-649. doi: 10.3788/fgxb20113207.0643http://dx.doi.org/10.3788/fgxb20113207.0643
YIN M, MIN J, DUAN C K. Transition selection rules of rare-earth in optical materials [J]. Chin. J. Lumin., 2011, 32(7): 643-649. (in Chinese). doi: 10.3788/fgxb20113207.0643http://dx.doi.org/10.3788/fgxb20113207.0643
KAMINSKII A A. Laser Crystals: Their Physics and Properties [M]. Berlin: Springer, 1990. doi: 10.1007/978-3-540-70749-3_5http://dx.doi.org/10.1007/978-3-540-70749-3_5
沈祥, 聂秋华, 徐铁峰, 等. Er3+/Yb3+共掺碲钨酸盐玻璃的光谱性质和热稳定性的研究 [J]. 物理学报, 2005, 54(5): 2379-2384. doi: 10.3321/j.issn:1000-3290.2005.05.076http://dx.doi.org/10.3321/j.issn:1000-3290.2005.05.076
SHEN X, NIE Q H, XU T F, et al. Investigation of spectral properties and thermal stability of Er3+/Yb3+ co-doped tungsten-tellurite glasses [J]. Acta Phys. Sinica, 2005, 54(5): 2379-2384. (in Chinese). doi: 10.3321/j.issn:1000-3290.2005.05.076http://dx.doi.org/10.3321/j.issn:1000-3290.2005.05.076
WANG R F, ZHOU D C, ZHAO Z Y, et al. Effect of optical basicity on broadband infrared fluorescence in erbium-doped germanate glasses [J]. J. Alloys Compd., 2012, 513: 339-342. doi: 10.1016/j.jallcom.2011.10.045http://dx.doi.org/10.1016/j.jallcom.2011.10.045
DIMITROV V, KOMATSU T. Classification of simple oxides: a polarizability approach [J]. J. Solid State Chem., 2002, 163(1): 100-112. doi: 10.1006/jssc.2001.9378http://dx.doi.org/10.1006/jssc.2001.9378
0
浏览量
157
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构