1.暨南大学 信息科学技术学院, 新能源技术研究院, 广东 广州 510632
2.五邑大学 智能制造学部, 广东 江门 529020
[ "谢光起(1998-),男,广西钦州人,硕士研究生,2020年于中南民族大学获得学士学位,主要从事新型钙钛矿太阳能电池的研究。 E-mail: 1227393032@qq. com" ]
[ "马梦恩(1995-),男,河南周口人,博士研究生,2020年于河南大学获得硕士学位,主要从事大面积钙钛矿太阳能电池的相关研究。E-mail: mengenma@jnu. edu. cn" ]
[ "杨恢东(1967-),男,湖南邵阳人,博士,教授,2003年于南开大学获得博士学位,主要从事半导体纳米材料制备、光电特性及其应用等方面的研究。E-mail: tyanghd@jnu. edu. cn" ]
[ "刘冲(1989-),男,河北保定人,博士,副研究员,2020年于暨南大学获得博士学位,主要从事新型钙钛矿太阳电池(涉及全无机钙钛矿太阳电池、大面积涂布和组件开发等领域)的研发。E-mail: chongliu@jnu. edu. cn" ]
扫 描 看 全 文
谢光起, 马梦恩, 杨丹妮, 等. 双自组装单分子层修饰氧化镍制备高效率钙钛矿太阳电池及组件[J]. 发光学报, 2023,44(6):1023-1031.
XIE Guangqi, MA Mengen, YANG Danni, et al. Co-assembled Monolayers Modified Nickel Oxide for High Efficient Perovskite Solar Cells and Modules[J]. Chinese Journal of Luminescence, 2023,44(6):1023-1031.
谢光起, 马梦恩, 杨丹妮, 等. 双自组装单分子层修饰氧化镍制备高效率钙钛矿太阳电池及组件[J]. 发光学报, 2023,44(6):1023-1031. DOI: 10.37188/CJL.20220414.
XIE Guangqi, MA Mengen, YANG Danni, et al. Co-assembled Monolayers Modified Nickel Oxide for High Efficient Perovskite Solar Cells and Modules[J]. Chinese Journal of Luminescence, 2023,44(6):1023-1031. DOI: 10.37188/CJL.20220414.
氧化镍(NiO,x,)作为无机p型半导体,常用于倒置钙钛矿太阳能电池(PSCs)中的空穴传输层(HTL),但本身存在的高缺陷密度和与钙钛矿不相匹配的能级排布限制了PSCs的能量转换效率。本文通过引入双自组装单分子层修饰氧化镍界面,钝化氧化镍材料自身缺陷,改善能级匹配,促进了界面处光生载流子的提取和传输,提高了PSCs的开路电压(,V,oc,)和填充因子(FF),最终将刮涂氧化镍基PSCs的效率提升到20.38%,而且未封装的器件在氮气氛围中用85 ℃老化1 000 h后仍维持原始效率的96%。更重要的是,我们以此制备了孔径面积为60.84 cm,2,、由13节子电池串联而成的钙钛矿组件,效率达到了17.04%。
Nickel oxide (NiO,x,), an inorganic p-type semiconductor, is commonly used as the hole transporting layer (HTL) for inverted perovskite solar cells (PSCs). However, the high defect density of NiO,x, and mismatched energy levels with the perovskite layer strongly limit the efficiency of PSCs. In this work, the co-assembled monolayer is introduced to modify the interface of NiO,x,, which was demonstrated to passivate the defects and improve the energy level alignment, leading to the enhancement of charge extraction and transmission at the interface. Finally, the blade-coated PSCs yield a power conversion efficiency of 20.38% due to the improvement on open circuit voltage (,V,oc,) and filling factor (FF). Moreover, the device without encapsulation can maintain 96% of the initial efficiency after aging at 85 ℃ for 1 000 h in nitrogen atmosphere. More importantly, we have fabricated a perovskite solar module with an aperture area of 60.84 cm,2,, which is composed of 13 sub cells in series, and the efficiency has reached 17.04%.
钙钛矿太阳电池组件能级匹配电荷抽取高效率
perovskite solar cellsmodulebandgap alignmentcharge extractionhigh efficiency
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. doi: 10.1021/ja809598rhttp://dx.doi.org/10.1021/ja809598r
PARK J, KIM J, YUN H S, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides [J]. Nature, 2023, 616(7958): 724-730. doi: 10.1038/s41586-023-05825-yhttp://dx.doi.org/10.1038/s41586-023-05825-y
BOYD C C, SHALLCROSS R C, MOOT T, et al. Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells [J]. Joule, 2020, 4(8): 1759-1775. doi: 10.1016/j.joule.2020.06.004http://dx.doi.org/10.1016/j.joule.2020.06.004
DI GIROLAMO D, DI GIACOMO F, MATTEOCCI F, et al. Progress, highlights and perspectives on NiO in perovskite photovoltaics [J]. Chem. Sci., 2020, 11(30): 7746-7759. doi: 10.1039/d0sc02859bhttp://dx.doi.org/10.1039/d0sc02859b
GŁOWIENKA D, ZHANG D, DI GIACOMO F, et al. Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3 [J]. Nano Energy, 2020, 67: 104186-1-11. doi: 10.1016/j.nanoen.2019.104186http://dx.doi.org/10.1016/j.nanoen.2019.104186
CHEN W, ZHOU Y C, CHEN G C, et al. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells [J]. Adv. Energy Mater., 2019, 9(19): 1803872-1-10. doi: 10.1002/aenm.201803872http://dx.doi.org/10.1002/aenm.201803872
NIU Q L, DENG Y K, CUI D Q, et al. Enhancing the performance of perovskite solar cells via interface modification [J]. J. Mater. Sci., 2019, 54(22): 14134-14142. doi: 10.1007/s10853-019-03898-7http://dx.doi.org/10.1007/s10853-019-03898-7
WANG T, CHENG Z D, ZHOU Y L, et al. Highly efficient and stable perovskite solar cells via bilateral passivation layers [J]. J. Mater. Chem. A, 2019, 7(38): 21730-21739. doi: 10.1039/c9ta08084hhttp://dx.doi.org/10.1039/c9ta08084h
WANG T, DING D, ZHENG H, et al. Efficient inverted planar perovskite solar cells using ultraviolet/ozone-treated NiOx as the hole transport layer [J]. Sol. RRL, 2019, 3(6): 1900045. doi: 10.1002/solr.201900045http://dx.doi.org/10.1002/solr.201900045
SINGH N, TAO Y T. Effect of surface modification of nickel oxide hole-transport layer via self-assembled monolayers in perovskite solar cells [J]. Nano Sel., 2021, 2(12): 2390-2399. doi: 10.1002/nano.202100004http://dx.doi.org/10.1002/nano.202100004
ZHU T, SU J, LABAT F, et al. Interfacial engineering through chloride-functionalized self-assembled monolayers for high-performance perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2019, 12(1): 744-752. doi: 10.1021/acsami.9b18034http://dx.doi.org/10.1021/acsami.9b18034
SUN J J, SHOU C H, SUN J S, et al. NiOx-seeded self-assembled monolayers as highly hole-selective passivating contacts for efficient inverted perovskite solar cells [J]. Sol. RRL, 2021, 5(11): 2100663-1-8. doi: 10.1002/solr.202100663http://dx.doi.org/10.1002/solr.202100663
DENG X, QI F, LI F Z, et al. Co-assembled monolayers as hole-selective contact for high-performance inverted perovskite solar cells with optimized recombination loss and long-term stability [J]. Angew. Chem. Int. Ed., 2022, 61(30): e202203088-1-8. doi: 10.1002/anie.202203088http://dx.doi.org/10.1002/anie.202203088
LI L D, WANG Y R, WANG X Y, et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact [J]. Nat. Energy, 2022, 7(8): 708-717. doi: 10.1038/s41560-022-01045-2http://dx.doi.org/10.1038/s41560-022-01045-2
XIAO M Y, LU T Y, LIN T, et al. Understanding molecular structures of buried interfaces in halide perovskite photovoltaic devices nondestructively with sub-monolayer sensitivity using sum frequency generation vibrational spectroscopy [J]. Adv. Energy Mater., 2020, 10(26): 1903053-1-10. doi: 10.1002/aenm.201903053http://dx.doi.org/10.1002/aenm.201903053
LIU C, YANG Y Z, ZHANG C L, et al. Tailoring C60 for efficient inorganic CsPbI2Br perovskite solar cells and modules [J]. Adv. Mater., 2020, 32(8): 1907361-1-9. doi: 10.1002/adma.201907361http://dx.doi.org/10.1002/adma.201907361
GAO Y Y, LIU C, XIE Y, et al. Can nanosecond laser achieve high-performance perovskite solar modules with aperture area efficiency over 21%?[J]. Adv. Energy Mater., 2022, 12(41): 2202287-1-8. doi: 10.1002/aenm.202202287http://dx.doi.org/10.1002/aenm.202202287
AL-ASHOURI A, MAGOMEDOV A, ROSS M, et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells [J]. Energy Environ. Sci., 2019, 12(11): 3356-3369. doi: 10.1039/c9ee02268fhttp://dx.doi.org/10.1039/c9ee02268f
KIM S Y, CHO S J, BYEON S E, et al. Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells [J]. Adv. Energy Mater., 2020, 10(44): 2002606-1-21. doi: 10.1002/aenm.202002606http://dx.doi.org/10.1002/aenm.202002606
ALI F, ROLDÁN-CARMONA C, SOHAIL M, et al. Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability [J]. Adv. Energy Mater., 2020, 10(48): 2002989-1-24. doi: 10.1002/aenm.202002989http://dx.doi.org/10.1002/aenm.202002989
BULLIARD X, IHN S G, YUN S, et al. Enhanced performance in polymer solar cells by surface energy control [J]. Adv. Funct. Mater., 2010, 20(24): 4381-4387. doi: 10.1002/adfm.201000960http://dx.doi.org/10.1002/adfm.201000960
LI F M, SHEN Z T, WENG Y J, et al. Novel electron transport layer material for perovskite solar cells with over 22% efficiency and long-term stability [J]. Adv. Funct. Mater., 2020, 30(45): 2004933-1-9. doi: 10.1002/adfm.202004933http://dx.doi.org/10.1002/adfm.202004933
邹宇, 李昭, 陈衡慧, 等. NaTFSI界面修饰对平面TiO2基钙钛矿太阳能电池的影响 [J]. 发光学报, 2021, 42(5): 682-690. doi: 10.37188/cjl.20210045http://dx.doi.org/10.37188/cjl.20210045
ZOU Y, LI Z, CHEN H H, et al. Effect of interfacial modification for TiO2-based planar perovskite solar cells using NaTFSI [J]. Chin. J. Lumin., 2021, 42(5): 682-690. (in Chinese). doi: 10.37188/cjl.20210045http://dx.doi.org/10.37188/cjl.20210045
ZHU X J, DU M Y, FENG J S, et al. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport [J]. Angew. Chem. Int. Ed., 2021, 60(8): 4238-4244. doi: 10.1002/anie.202010987http://dx.doi.org/10.1002/anie.202010987
LI W Z, ZHANG C L, MA Y P, et al. In situ induced core/shell stabilized hybrid perovskites via gallium(Ⅲ) acetylacetonate intermediate towards highly efficient and stable solar cells [J]. Energy Environ. Sci., 2018, 11(2): 286-293. doi: 10.1039/c7ee03113khttp://dx.doi.org/10.1039/c7ee03113k
MA J, LIN Z H, GUO X, et al. Low-temperature solution-processed ZnO electron transport layer for highly efficient and stable planar perovskite solar cells with efficiency over 20% [J]. Sol. RRL, 2019, 3(7): 1900096. doi: 10.1002/solr.201900096http://dx.doi.org/10.1002/solr.201900096
WANG Q, CHUEH C C, ZHAO T, et al. Effects of self-assembled monolayer modification of nickel oxide nanoparticles layer on the performance and application of inverted perovskite solar cells [J]. ChemSusChem, 2017, 10(19): 3794-3803. doi: 10.1002/cssc.201701262http://dx.doi.org/10.1002/cssc.201701262
CHEN H, YE F, TANG W T, et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules [J]. Nature, 2017, 550(7674): 92-95. doi: 10.1038/nature23877http://dx.doi.org/10.1038/nature23877
0
浏览量
52
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构