浏览全部资源
扫码关注微信
陕西师范大学 化学化工学院, 陕西 西安 710119
[ "孔俊人(2000-),女,河南汝州人,硕士研究生,2022年于河南科技大学获得学士学位,主要从事无机发光材料的研究。E-mail:1783075920@qq. com" ]
[ "王晓明(1983-),男,内蒙古鄂尔多斯人,博士,副教授,2012年于北京大学获得博士学位,主要从事无机固体功能材料、氮化物发光材料与离子导体材料的研究。" ]
[ "焦桓(1968-),女,陕西三原人,博士, 教授,2001年于西北工业大学获得博士学位, 主要从事固体无机材料、照明显示发光材料与新能源材料的基础与应用的研究。" ]
纸质出版日期:2023-06-05,
收稿日期:2022-12-12,
修回日期:2022-12-22,
扫 描 看 全 文
孔俊人,周洋,张世瑞等.一种新型氟化物红色荧光粉BaTaF7∶Mn4+[J].发光学报,2023,44(06):975-984.
KONG Junren,ZHOU Yang,ZHANG Shirui,et al.A Novel Red Fluoride Phosphor BaTaF7∶Mn4+[J].Chinese Journal of Luminescence,2023,44(06):975-984.
孔俊人,周洋,张世瑞等.一种新型氟化物红色荧光粉BaTaF7∶Mn4+[J].发光学报,2023,44(06):975-984. DOI: 10.37188/CJL.20220411.
KONG Junren,ZHOU Yang,ZHANG Shirui,et al.A Novel Red Fluoride Phosphor BaTaF7∶Mn4+[J].Chinese Journal of Luminescence,2023,44(06):975-984. DOI: 10.37188/CJL.20220411.
采用共沉淀方法合成了一种新型氟化物红色荧光粉BaTaF
7
∶Mn
4+
,确定了BaTaF
7
的组成与晶体结构,研究并讨论了晶体结构与发光性能之间的关系。在紫外(UV)和蓝光激发下,BaTaF
7
∶Mn
4+
荧光粉在630 nm表现出强烈的零声子线(ZPL)发射,其源于晶体结构中[MnF
7
]畸变八面体的
C
3
v
群对称环境。由YAG∶Ce
3+
和BaTaF
7
∶Mn
4+
荧光粉混合制备的暖白光LED表现出较优异的性能,表明BaTaF
7
∶Mn
4+
具有成为暖白色发光二极管红色荧光粉的应用潜力。
A novel red fluoride phosphor BaTaF
7
∶Mn
4+
was synthesized
via
the conventional co-precipitation method. The structure and luminescence properties of BaTaF
7
∶Mn
4+
were investigated and discussed under various conditions. The BaTaF
7
∶Mn
4+
phosphor shows strong ZPL emission intensity at about 630 nm under ultraviolet (UV) and blue light excitation. It originated from the highly distorted Mn
4+
octahedral coordination environment in the
C
3v
group symmetry. A warm LED fabricated with a blend of YAG∶Ce
3+
and the BaTaF
7
∶Mn
4+
phosphor showed excellent performance, indicating BaTaF
7
∶Mn
4+
potential for application as a red phosphor for warm WLEDs.
氟化物Mn4+掺杂红色荧光粉零声子线暖白色发光二极管
fluorideMn4+ dopedred phosphorzero-phonon linewarm WLEDs
SCHUBERT E F, KIM J K. Solid-state light sources getting smart [J]. Science, 2005, 308(5726): 1274-1278. doi: 10.1126/science.1108712http://dx.doi.org/10.1126/science.1108712
IM W B, GEORGE N, KURZMAN J, et al. Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting [J]. Adv. Mater., 2011, 23(20): 2300-2305. doi: 10.1002/adma.201003640http://dx.doi.org/10.1002/adma.201003640
DAICHO H, IWASAKI T, ENOMOTO K, et al. A novel phosphor for glareless white light-emitting diodes [J]. Nat. Commun., 2012, 3: 1132-1-8. doi: 10.1038/ncomms2138http://dx.doi.org/10.1038/ncomms2138
ZHU H M, LIN C C, LUO W Q, et al. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes [J]. Nat. Commun., 2014, 5: 4312-1-7. doi: 10.1038/ncomms5312http://dx.doi.org/10.1038/ncomms5312
WEI L L, LIN C C, WANG Y Y, et al. Photoluminescent evolution induced by structural transformation through thermal treating in the red narrow-band phosphor K2GeF6∶Mn4+ [J]. ACS Appl. Mater. Interfaces, 2015, 7(20): 10656-10659. doi: 10.1021/acsami.5b02212http://dx.doi.org/10.1021/acsami.5b02212
WEI L L, LIN C C, FANG M H, et al. A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6∶Mn4+ (M = Ge, Si) for white LED applications [J]. J. Mater. Chem. C, 2015, 3(8): 1655-1660. doi: 10.1039/c4tc02551bhttp://dx.doi.org/10.1039/c4tc02551b
SONG E H, WANG J Q, YE S, et al. Room-temperature synthesis and warm-white LED applications of Mn4+ ion doped fluoroaluminate red phosphor Na3AlF6∶Mn4+ [J]. J. Mater. Chem. C, 2016, 4(13): 2480-2487. doi: 10.1039/c6tc00502khttp://dx.doi.org/10.1039/c6tc00502k
JIN Y, FANG M H, GRINBERG M, et al. Narrow red emission band fluoride phosphor KNaSiF6∶Mn4+ for warm white light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2016, 8(18): 11194-11203. doi: 10.1021/acsami.6b01905http://dx.doi.org/10.1021/acsami.6b01905
DENG T T, SONG E H, SUN J, et al. The design and preparation of the thermally stable, Mn4+ ion activated, narrow band, red emitting fluoride Na3GaF6∶Mn4+ for warm WLED applications [J]. J. Mater. Chem. C, 2017, 5(11): 2910-2918. doi: 10.1039/c7tc00011ahttp://dx.doi.org/10.1039/c7tc00011a
NGUYEN H D, LIU R S. Narrow-band red-emitting Mn4+-doped hexafluoride phosphors: synthesis, optoelectronic properties, and applications in white light-emitting diodes [J]. J. Mater. Chem. C, 2016, 4(46): 10759-10775. doi: 10.1039/c6tc03292chttp://dx.doi.org/10.1039/c6tc03292c
PIAO X, MACHIDA K I, HORIKAWA T, et al. Preparation of CaAlSiN3∶Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties [J]. Chem. Mater., 2007, 19(18): 4592-4599. doi: 10.1021/cm070623chttp://dx.doi.org/10.1021/cm070623c
UHEDA K, HIROSAKI N, YAMAMOTO Y, et al. Luminescence properties of a red phosphor, CaAlSiN3∶Eu2+, for white light-emitting diodes [J]. Electrochem. Solid⁃State Lett., 2006, 9(4): H22-H25. doi: 10.1149/1.2173192http://dx.doi.org/10.1149/1.2173192
WU Z Y, LI C, ZHANG F, et al. High-performance ultra-narrow-band green-emitting phosphor LaMgAl11O19∶Mn2+ for wide color-gamut WLED backlight displays [J]. J. Mater. Chem. C, 2022, 10(19): 7443-7448. doi: 10.1039/d2tc00850ehttp://dx.doi.org/10.1039/d2tc00850e
LI C, WANG X M, CHI F F, et al. A narrow-band blue emitting phosphor Ca8Mg7Si9N22∶Eu2+ for pc-LEDs [J]. J Mater. Chem. C, 2019, 7(13): 3730-3734. doi: 10.1039/c9tc00855ahttp://dx.doi.org/10.1039/c9tc00855a
LI C, ZHENG H W, WEI H W, et al. Narrow-band blue emitting nitridomagnesosilicate phosphor Sr8Mg7Si9N22∶Eu2+ for phosphor-converted LEDs [J]. Chem. Commun., 2018, 54(82): 11598-11601. doi: 10.1039/c8cc07218chttp://dx.doi.org/10.1039/c8cc07218c
ZHOU Q, ZHOU Y Y, LIU Y, et al. A new and efficient red phosphor for solid-state lighting: Cs2TiF6∶Mn4+ [J]. J. Mater. Chem. C, 2015, 3(37): 9615-9619. doi: 10.1039/c5tc02290hhttp://dx.doi.org/10.1039/c5tc02290h
TANG F, SU Z C, YE H G, et al. A set of manganese ion activated fluoride phosphors (A2BF6∶Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 ℃ and efficient room-temperature photoluminescence [J]. J. Mater. Chem. C, 2016, 4(40): 9561-9568. doi: 10.1039/c6tc02737ghttp://dx.doi.org/10.1039/c6tc02737g
WU W L, FANG M H, ZHOU W L, et al. High color rendering index of Rb2GeF6∶Mn4+ for light-emitting diodes [J]. Chem. Mater., 2017, 29(3): 935-939.
ZHOU Q, ZHOU Y Y, LIU Y, et al. A new red phosphor BaGeF6∶Mn4+: hydrothermal synthesis, photo-luminescence properties, and its application in warm white LED devices [J]. J. Mater. Chem. C, 2015, 3(13): 3055-3059. doi: 10.1039/c4tc02956ahttp://dx.doi.org/10.1039/c4tc02956a
ZHONG J S, CHEN D Q, WANG X, et al. Synthesis and optical performance of a new red-emitting ZnTiF6·6H2O∶Mn4+ phosphor for warm white-light-emitting diodes [J]. J. Alloys Compd., 2016, 662: 232-239. doi: 10.1016/j.jallcom.2015.12.075http://dx.doi.org/10.1016/j.jallcom.2015.12.075
HOSHINO R, ADACHI S. Optical spectroscopy and degradation behavior of ZnGeF6·6H2O∶Mn4+ red-emitting phosphor [J]. J. Lumin., 2015, 162: 63-71. doi: 10.1016/j.jlumin.2015.02.011http://dx.doi.org/10.1016/j.jlumin.2015.02.011
DENG T T, SONG E H, ZHOU Y Y, et al. Stable narrowband red phosphor K3GaF6∶Mn4+ derived from hydrous K2GaF5(H2O) and K2MnF6 [J]. J. Mater. Chem. C, 2017, 5(37): 9588-9596. doi: 10.1039/C7TC03116Ehttp://dx.doi.org/10.1039/C7TC03116E
SONG E H, WANG J Q, SHI J H, et al. Highly efficient and thermally stable K3AlF6∶Mn4+ as a red phosphor for ultra-high-performance warm white light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2017, 9(10): 8805-8812. doi: 10.1021/acsami.7b00749http://dx.doi.org/10.1021/acsami.7b00749
LIN H, HU T, HUANG Q M, et al. Non-rare-earth K2XF7∶Mn4+ (X = Ta, Nb): a highly-efficient narrow-band red phosphor enabling the application in wide-color-gamut LCD [J]. Laser Photonics Rev., 2017, 11(6): 1700148-1-10. doi: 10.1002/lpor.201700148http://dx.doi.org/10.1002/lpor.201700148
WANG L Y, SONG E H, DENG T T, et al. Luminescence properties and warm white LED application of a ternary-alkaline fluoride red phosphor K2NaAlF6∶Mn4+ [J]. Dalton Tans., 2017, 46(30): 9925-9933. doi: 10.1039/c7dt02036hhttp://dx.doi.org/10.1039/c7dt02036h
QIU S J, WEI H W, WANG M M, et al. Synthesis and photoluminescence of Mn4+ activated ternary-alkaline fluoride K2NaGaF6 red phosphor for warm-white LED application [J]. RSC Adv., 2017, 7(79): 50396-50402. doi: 10.1039/c7ra10274ghttp://dx.doi.org/10.1039/c7ra10274g
JANSEN T, BAUR F, JÜSTEL T. Red emitting K2NbF7∶Mn4+ and K2TaF7∶Mn4+ for warm-white LED applications [J]. J. Lumin., 2017, 192: 644-652. doi: 10.1016/j.jlumin.2017.07.061http://dx.doi.org/10.1016/j.jlumin.2017.07.061
ZHOU Y, ZHANG S, WANG X M, et al. Structure and luminescence properties of Mn4+-activated K3TaO2F4 red phosphor for white LEDs [J]. Inorg. Chem., 2019, 58(7): 4412-4419. doi: 10.1021/acs.inorgchem.8b03577http://dx.doi.org/10.1021/acs.inorgchem.8b03577
LAZAROWSKA A, MAHLIK S, GRINBERG M, et al. Pressure effect on the zero-phonon line emission of Mn4+ in K2SiF6 [J]. J. Chem. Phys., 2015, 143(13): 134704-1-4. doi: 10.1063/1.4932181http://dx.doi.org/10.1063/1.4932181
司帅晨, 黄霖, 王静. K2SiF6∶Mn4+荧光玻璃陶瓷及其在激光照明中的应用 [J]. 发光学报, 2021, 42(10): 1549-1558. doi: 10.37188/CJL.20210176http://dx.doi.org/10.37188/CJL.20210176
SI S C, HUANG L, WANG J. K2SiF6∶Mn4+ luminescent glass ceramics applicable to laser lighting [J]. Chin. J. Lumin., 2021, 42(10): 1549-1558. (in Chinese). doi: 10.37188/CJL.20210176http://dx.doi.org/10.37188/CJL.20210176
SHELDRICK G M.Crystal structure refinement with SHELXL [J].Acta Crystallogr C Struct. Chem., 2015, 71(Pt 1): 3-8. doi: 10.1107/s2053229614024218http://dx.doi.org/10.1107/s2053229614024218
SHELDRICK G M. A short history of SHELX [J]. Acta Crystallogr. A, 2008, 64: 112-122. doi: 10.1107/s0108767307043930http://dx.doi.org/10.1107/s0108767307043930
SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. J. Phys.: Condens Matter., 2002, 14(11): 2717-2744. doi: 10.1088/0953-8984/14/11/301http://dx.doi.org/10.1088/0953-8984/14/11/301
HENDERSON B, IMBUSCH G F. Optical Spectroscopy of Inorganic Solids [M]. Oxford: Oxford University Press, 2006. doi: 10.1016/s1369-7021(06)71623-6http://dx.doi.org/10.1016/s1369-7021(06)71623-6
SRIVASTAVA A M, ACKERMAN J F. Synthesis and luminescence properties of barium niobium oxide fluoride(BaNbOF5) with isolated [NbOF5]2- octahedra [J]. Chem. Mater., 1992, 4(5): 1011-1013. doi: 10.1021/cm00023a016http://dx.doi.org/10.1021/cm00023a016
WANG Y G, WEN T, TANG L Y, et al. Impact of hydrostatic pressure on the crystal structure and photoluminescence properties of Mn4+-doped BaTiF6 red phosphor [J]. Dalton Trans., 2015, 44(16): 7578-7585. doi: 10.1039/c5dt00426hhttp://dx.doi.org/10.1039/c5dt00426h
姬海鹏. Mn4+离子光谱学基础 [J]. 发光学报, 2022, 43(8): 1175-1187. doi: 10.37188/cjl.20220102http://dx.doi.org/10.37188/cjl.20220102
JI H B. Basic knowledge for understanding spectroscopic property of Mn4+ ion [J]. Chin. J. Lumin., 2022, 43(8): 1175-1187. (in Chinese). doi: 10.37188/cjl.20220102http://dx.doi.org/10.37188/cjl.20220102
ZHONG Y, GAI S J, XIA M, et al. Enhancing quantum efficiency and tuning photoluminescence properties in far-red-emitting phosphor Ca14Ga10Zn6O35∶Mn4+ based on chemical unit engineering [J]. Chem. Eng. J., 2019, 374: 381-391. doi: 10.1016/j.cej.2019.05.201http://dx.doi.org/10.1016/j.cej.2019.05.201
DONG X L, PAN Y X, LI D, et al. A novel red phosphor of Mn4+ ion-doped oxyfluoroniobate BaNbOF5 for warm WLED applications [J]. CrystEngComm, 2018, 20(37): 5641-5646. doi: 10.1039/c8ce01304ghttp://dx.doi.org/10.1039/c8ce01304g
ZHAO D, ZHANG S R, FAN Y P, et al. Two-site occupancy induced a broad-band emission in phosphor K2YZr(PO4)3∶Eu2+ for white-light-emitting diode applications [J]. ACS Sustainable Chem. Eng., 2020, 8(51): 18992-19002. doi: 10.1021/acssuschemeng.0c07082http://dx.doi.org/10.1021/acssuschemeng.0c07082
NOCEDAL J. Updating quasi-newton matrices with limited storage [J]. Math. Comput., 1980, 35(151): 773-782. doi: 10.1090/s0025-5718-1980-0572855-7http://dx.doi.org/10.1090/s0025-5718-1980-0572855-7
PENG L L, CHEN W B, CAO S X, et al. Enhanced photoluminescence and thermal properties due to size mismatch in Mg2TixGe1-xO4∶Mn4+ deep-red phosphors [J]. J. Mater. Chem. C, 2019, 7(8): 2345-2352. doi: 10.1039/c8tc05743ehttp://dx.doi.org/10.1039/c8tc05743e
HU T, LIN H, GAO Y, et al. Host sensitization of Mn4+ in self-activated Na2WO2F4∶Mn4+ [J]. J. Am. Ceram. Soc., 2018, 101(8): 3437-3442. doi: 10.1111/jace.15521http://dx.doi.org/10.1111/jace.15521
0
浏览量
161
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构