浏览全部资源
扫码关注微信
1.北京工业大学信息学部 光电子技术教育部重点实验室, 北京 100124
2.长春理工大学 高功率半导体激光国家重点实验室, 吉林 长春 130022
3.中国科学院 苏州纳米技术与纳米仿生研究所, 江苏 苏州 215123
[ "李嘉豪(1998-),男,北京人,硕士研究生,2020年于北京工业大学获得学士学位,主要从事半导体光电材料与器件的外延生长的研究。E-mail: 1483676540@qq.com" ]
[ "邓旭光(1987-),男,内蒙古呼和浩特人,硕士,高级工程师,2013年于北京工业大学获得硕士学位,主要从事GaN材料生长和HEMT器件制备的 研究。E-mail: xgdeng2011@sinano. ac. cn" ]
纸质出版日期:2023-06-05,
收稿日期:2022-12-07,
修回日期:2022-12-29,
扫 描 看 全 文
李嘉豪,韩军,邢艳辉等.不同Mo层厚度的AlN/Mo/Sc0.2Al0.8N复合结构上MOCVD外延GaN[J].发光学报,2023,44(06):1077-1084.
LI Jiahao,HAN Jun,XING Yanhui,et al.GaN Grown on Sputtered AlN/Mo/Sc0.2Al0.8N Composite Structure with Different Mo Thickness[J].Chinese Journal of Luminescence,2023,44(06):1077-1084.
李嘉豪,韩军,邢艳辉等.不同Mo层厚度的AlN/Mo/Sc0.2Al0.8N复合结构上MOCVD外延GaN[J].发光学报,2023,44(06):1077-1084. DOI: 10.37188/CJL.20220406.
LI Jiahao,HAN Jun,XING Yanhui,et al.GaN Grown on Sputtered AlN/Mo/Sc0.2Al0.8N Composite Structure with Different Mo Thickness[J].Chinese Journal of Luminescence,2023,44(06):1077-1084. DOI: 10.37188/CJL.20220406.
采用脉冲直流磁控溅射法在Si(100)衬底上制备了AlN/Mo/Sc
0.2
Al
0.8
N复合结构薄膜,在该结构上通过金属有机化学气相沉积(MOCVD)技术进行GaN薄膜的外延。使用原子力显微镜、高分辨X射线衍射、粉末X射线衍射、扫描电子显微镜和拉曼光谱研究了Mo插入层的厚度对Sc
0.2
Al
0.8
N缓冲层和GaN外延层晶体质量的影响,研究了Sc
0.2
Al
0.8
N缓冲层对Mo上生长的GaN外延层的影响。研究结果表明,Mo插入层的厚度是影响Sc
0.2
Al
0.8
N缓冲层和GaN外延层的重要因素,Sc
0.2
Al
0.8
N缓冲层对Mo上GaN晶体质量的提高具有重要意义。随Mo厚度的增加,Sc
0.2
Al
0.8
N缓冲层的表面粗糙度先减小后增大,GaN外延层的(002)面X射线衍射摇摆曲线半峰全宽先减小后增大。当Mo插入层厚度为400 nm时,GaN外延层的晶体质量最好,GaN(002)面的X射线衍射摇摆曲线半峰全宽为0.51°,由拉曼光谱计算得到的压应力483.09 MPa;直接在Mo上进行GaN的外延,GaN(002)面的X射线衍射摇摆曲线半峰全宽无法测得,说明在Mo上进行GaN的外延需要Sc
0.2
Al
0.8
N缓冲层。
AlN/Mo/Sc
0.2
Al
0.8
N composite structure films were prepared on Si(100) substrate by pulsed DC magnetron sputtering, and the epitaxy of GaN films was grown by metal-organic chemical vapor deposition(MOCVD). Atomic force microscopy, high-resolution X-ray diffraction, powder X-ray diffraction, scanning electron microscopy and Raman spectroscopy were used to study the effect of the thickness of the Mo layer on the crystal quality of the Sc
0.2
Al
0.8
N layer and the GaN epitaxial layer, and the importance of the Sc
0.2
Al
0.8
N layer for the GaN epitaxial layer grown on Mo was also studied. The results show that the thickness of the Mo layer is an important factor affecting the Sc
0.2
Al
0.8
N layer and the GaN epitaxial layer, and the Sc
0.2
Al
0.8
N layer is of great significance to the epitaxy of GaN on Mo. When the thickness of the Mo layer is 400 nm, the crystal quality of the GaN epitaxial layer is the best, the full width at half maximum of the X-ray diffraction on the GaN(002) surface is 0.51°, and the compressive stress calculated by Raman spectroscopy is 483.09 MPa.
GaN金属有机化学气相沉积(MOCVD)ScAlNX射线衍射
GaNmetal-organic chemical vapor deposition(MOCVD)ScAlNX-ray diffraction(XRD)
YIN S, LIN Y M, HAO R H, et al. Evaluation of reliability and lifetime of 650 V GaN-on-Si power devices fabricated on 200-mm CMOS-compatible process platform for high-density power converter application [C]. Proceedings of the IEEE 34th International Symposium on Power Semiconductor Devices and ICs, Vancouver, 2022: 93-96. doi: 10.1109/ispsd49238.2022.9813684http://dx.doi.org/10.1109/ispsd49238.2022.9813684
LU S C, ZHAO T Y, ZHANG Z C, et al. Low parasitic-inductance packaging of a 650 V/150 A half-bridge module using enhancement-mode gallium-nitride high electron mobility transistors [J]. IEEE Trans. Ind. Electron., 2023, 70(1): 344-351. doi: 10.1109/tie.2022.3148750http://dx.doi.org/10.1109/tie.2022.3148750
KUMAR R, SARKAR A, ANAND S, et al. H-bridge derived topology for dynamic on-resistance evaluation in power GaN HEMTs [J]. IEEE Trans. Ind. Electron., 2023, 70(2): 1532-1541. doi: 10.1109/tie.2022.3161822http://dx.doi.org/10.1109/tie.2022.3161822
YU S Y, ZHOU Q, SHI G, et al. A 400-V half bridge gate driver for normally-off GaN HEMTs with effective Dv/Dt control and high Dv/Dt immunity [J]. IEEE Trans. Ind. Electron., 2023, 70(1): 741-751. doi: 10.1109/tie.2022.3153808http://dx.doi.org/10.1109/tie.2022.3153808
DAS R, LE H P. Gate driver circuits with discrete components for GaN-based multilevel multi-inductor hybrid converter [J]. IEEE Trans. Ind. Electron., 2023, 70(2): 1105-1114. doi: 10.1109/tie.2022.3158014http://dx.doi.org/10.1109/tie.2022.3158014
ZHANG Y, XU W Z, XIE Y, et al. Analysis of dead-time energy loss in GaN-based TCM converters with an improved GaN HEMT model [J]. IEEE Trans. Power Electron., 2023, 38(2): 1806-1818. doi: 10.1109/tpel.2022.3217456http://dx.doi.org/10.1109/tpel.2022.3217456
许海龙, 陈孔杰, 陈培崎, 等. 无电学接触型氮化镓基Micro-LED器件光电性能 [J]. 发光学报, 2022, 43(10): 1592-1600. doi: 10.37188/cjl.20220237http://dx.doi.org/10.37188/cjl.20220237
XU H L, CHEN K J, CHEN P Q, et al. Photoelectric characteristics of non-electric contact GaN-based Micro-LED device [J]. Chin. J. Lumin., 2022, 43(10): 1592-1600. (in Chinese). doi: 10.37188/cjl.20220237http://dx.doi.org/10.37188/cjl.20220237
齐赵毅, 胡晓龙, 王洪. GaN基薄膜LED倒装芯片表面结构设计及光萃取效率研究 [J]. 发光学报, 2017, 38(3): 338-346. doi: 10.3788/fgxb20173803.0338http://dx.doi.org/10.3788/fgxb20173803.0338
QI Z Y, HU X L, WANG H. Design of surface textures for high light extraction efficiency GaN-based flip-chip TFLEDs [J]. Chin. J. Lumin., 2017, 38(3): 338-346. (in Chinese). doi: 10.3788/fgxb20173803.0338http://dx.doi.org/10.3788/fgxb20173803.0338
YUK K, BRANNER G R, CUI C. Future directions for GaN in 5G and satellite communications [C]. Proceedings of the IEEE 60th International Midwest Symposium on Circuits and Systems, Boston, 2017: 803-806. doi: 10.1109/mwscas.2017.8053045http://dx.doi.org/10.1109/mwscas.2017.8053045
NAKAJIMA S. GaN HEMTs for 5G base station applications [C]. Proceedings of 2018 IEEE International Electron Devices Meeting, San Francisco, 2018: 14.2.1-14.2.4. doi: 10.1109/iedm.2018.8614588http://dx.doi.org/10.1109/iedm.2018.8614588
ZHANG R C, ZHAO B J, HUANG K, et al. Silicon-on-insulator with hybrid orientations for heterogeneous integration of GaN on Si (100) substrate [J]. AIP Adv., 2018, 8(5): 055323-1-10. doi: 10.1063/1.5030776http://dx.doi.org/10.1063/1.5030776
SARON K M A, IBRAHIM M, HASHIM M R, et al. Leakage current reduction in n-GaN/p-Si(100) heterojunction solar cells [J]. Appl. Phys. Lett., 2021, 118(2): 023902-1-7. doi: 10.1063/5.0037866http://dx.doi.org/10.1063/5.0037866
CHROMIK Š, SOJKOVÁ M, VRETENÁR V, et al. Influence of GaN/AlGaN/GaN(0001) and Si(100) substrates on structural properties of extremely thin MoS2 films grown by pulsed laser deposition [J]. Appl. Surf. Sci., 2017, 395: 232-236. doi: 10.1016/j.apsusc.2016.06.038http://dx.doi.org/10.1016/j.apsusc.2016.06.038
李水明. 大尺寸硅衬底GaN基HEMT外延生长研究 [D]. 武汉: 华中科技大学, 2016.
LI S M. Epitaxial Growth of GaN⁃based HEMT on Large Diameter Silicon Substrates [D]. Wuhan: Huazhong University of Science & Technology, 2016. (in Chinese)
FENG Y X, YANG X L, ZHANG Z H, et al. Epitaxy of single-crystalline GaN film on CMOS-compatible Si(100) substrate buffered by graphene [J]. Adv. Funct. Mater., 2019, 29(42): 1905056-1-7. doi: 10.1002/adfm.201905056http://dx.doi.org/10.1002/adfm.201905056
BESSOLOV V, ZUBKOVA A, KONENKOVA E, et al. Semipolar GaN (10-11) epitaxial layer prepared on nano-patterned SiC/Si (100) template [J]. Phys. Status Solidi (B), 2019, 256(2): 1800268-1-5. doi: 10.1002/pssb.201800268http://dx.doi.org/10.1002/pssb.201800268
GIANGU I, STAVRINIDIS G, STEFANESCU A, et al. Pressure sensors based on high frequency operating GaN FBARs [C]. Proceedings of 2015 International Semiconductor Conference, Sinaia, 2015: 99-102. doi: 10.1109/smicnd.2015.7355174http://dx.doi.org/10.1109/smicnd.2015.7355174
DARGIS R, CLARK A, ANSARI A, et al. Single-crystal multilayer nitride, metal, and oxide structures on engineered silicon for new-generation radio frequency filter applications [J]. Phys. Status Solidi (A), 2020, 217(7): 1900813-1-8. doi: 10.1002/pssa.201900813http://dx.doi.org/10.1002/pssa.201900813
WOLFF N, FICHTNER S, HAAS B, et al. Atomic scale confirmation of ferroelectric polarization inversion in wurtzite-type AlScN [J]. J. Appl. Phys., 2021, 129(3): 034103-1-9. doi: 10.1063/5.0033205http://dx.doi.org/10.1063/5.0033205
ZHANG S, FU W Y, HOLEC D, et al. Elastic constants and critical thicknesses of ScGaN and ScAlN [J]. J. Appl. Phys., 2013, 114(24): 243516-1-6. doi: 10.1063/1.4848036http://dx.doi.org/10.1063/1.4848036
KUROSAWA M, KAWABATA N, SADOH T, et al. Enhanced interfacial-nucleation in Al-induced crystallization for (111) oriented Si1-xGex(0≤x≤1) films on insulating substrates [J]. ECS J. Solid State Sci. Technol., 2012, 1(3): 144-147. doi: 10.1149/2.010203jsshttp://dx.doi.org/10.1149/2.010203jss
MURATA H, NAKAJIMA Y, SAITOH N, et al. High-electrical-conductivity multilayer graphene formed by layer exchange with controlled thickness and interlayer [J]. Sci. Rep., 2019, 9(1): 4068-1-5. doi: 10.1038/s41598-019-40547-0http://dx.doi.org/10.1038/s41598-019-40547-0
TOKO K, NUMATA R, SAITOH N, et al. Selective formation of large-grained, (100)- or (111)-oriented Si on glass by Al-induced layer exchange [J]. J. Appl. Phys., 2014, 115(9): 094301-1-4. doi: 10.1063/1.4867218http://dx.doi.org/10.1063/1.4867218
LI W M, YAN X, ABERLE A G, et al. Analysis of microstructure and surface morphology of sputter deposited molybdenum back contacts for CIGS solar cells [J]. Procedia Eng., 2016, 139: 1-6. doi: 10.1016/j.proeng.2015.09.231http://dx.doi.org/10.1016/j.proeng.2015.09.231
LEE S R, WEST A M, ALLERMAN A A, et al. Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers [J]. Appl. Phys. Lett., 2005, 86(24): 241904-1-3. doi: 10.1063/1.1947367http://dx.doi.org/10.1063/1.1947367
KISIELOWSKI C, KRÜGER J, RUVIMOV S, et al. Strain-related phenomena in GaN thin films [J]. Phys. Rev. B, 1996, 54(24): 17745-17753. doi: 10.1103/physrevb.54.17745http://dx.doi.org/10.1103/physrevb.54.17745
许振嘉. 半导体的检测与分析 [M]. 第2版. 北京: 科学出版社, 2007.
XU Z J. Semiconductor Detection and Analysis [M]. 2nd ed. Beijing: Science Press, 2007. (in Chinese)
0
浏览量
110
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构