浏览全部资源
扫码关注微信
1.宁波大学高等技术研究院 红外材料及器件实验室, 浙江 宁波 315211
2.浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211
[ "邵欲欣(1996-),女,河北张家口人,硕士研究生,2020年于河北大学获得学士学位,主要从事稀土离子掺杂玻璃微球激光性能及传感的研究。E-mail: nbushaoyuxin@163.com " ]
[ "康世亮(1990-),男,河北张家口人,博士,2020年于华南理工大学获得博士学位,主要从事光功能玻璃和光纤器件的研究。E-mail: kangshiliang@nbu.edu.cn " ]
[ "林常规(1984-),男,浙江温州人,博士,研究员,2010年于武汉理工大学获得博士学位,主要从事特种玻璃材料光功能开发及其器件化(包括玻璃晶化机理、光功能玻璃陶瓷材料、红外玻璃材料、基于硫系玻璃的红外光学系统等)的研究。E-mail: linchanggui@nbu.edu.cn" ]
纸质出版日期:2023-05-05,
收稿日期:2022-12-01,
修回日期:2022-12-19,
移动端阅览
邵欲欣,康世亮,李赛辉等.Er3+掺杂氟碲酸盐玻璃微球腔的激光性能及其温度传感研究[J].发光学报,2023,44(05):845-851.
SHAO Yuxin,KANG Shiliang,LI Saihui,et al.Laser Properties and Temperature Sensing of Er3+-doped Fluortellurite Glass Microsphere[J].Chinese Journal of Luminescence,2023,44(05):845-851.
邵欲欣,康世亮,李赛辉等.Er3+掺杂氟碲酸盐玻璃微球腔的激光性能及其温度传感研究[J].发光学报,2023,44(05):845-851. DOI: 10.37188/CJL.20220401.
SHAO Yuxin,KANG Shiliang,LI Saihui,et al.Laser Properties and Temperature Sensing of Er3+-doped Fluortellurite Glass Microsphere[J].Chinese Journal of Luminescence,2023,44(05):845-851. DOI: 10.37188/CJL.20220401.
采用高温浮粉熔融法制备了组分为60TeO
2
⁃10GeO
2
⁃20BaF
2
⁃9Y
2
O
3
⁃1Er
2
O
3
的Er
3+
掺杂氟碲酸盐玻璃微球,并对其品质因子(
Q
)、近红外激光特性以及温度传感进行了细致研究。结果发现微球腔的
Q
值可高达 ~10
6
。在980 nm激光泵浦下,在直径为44.58 μm的微球中实现了阈值为54 μW、光学转换效率为0.050%的 1 607 nm激光输出。通过研究不同直径对微球腔激光性能的影响规律,可知随着微球腔直径的减小,激光阈值逐渐降低,光学转换效率逐渐提高,这主要归因于较小的微球腔具有更高的能量密度和更强的光与物质相互作用。此外,研究了微球腔的温度传感特性,其灵敏度为14 pm/℃。以上实验结果表明,所制备的Er
3+
掺杂氟碲酸盐玻璃微球腔在低阈值激光器和高灵敏度温度传感器领域具有潜在的应用。
Er
3+
-doped fluortellurite glass microspheres composed of 60TeO
2
-10GeO
2
-20BaF
2
-9Y
2
O
3
-1Er
2
O
3
were prepared by high temperature floating-powder melting method, and their quality factor (
Q
), near-infrared laser performance and temperature sensing were studied in detail. The results show that the
Q
factor of the microsphere cavity can be as high as ~10
6
. Under excitation of a 980 nm LD, 1 607 nm laser output with the threshold of 54 μW and optical conversion efficiency of 0.050% was realized in the microsphere with the diameter of 44.58 μm. By investigating the influence of microsphere diameter on the laser performance, it can be obtained that with the decrease of the microsphere diameter, the laser threshold gradually decreases and the optical conversion efficiency gradually increases. This is mainly attributed to the higher energy density and stronger light-matter interaction of the smaller microsphere cavity. In addition, the temperature sensing property of the microsphere cavity was investigated, yielding a temperature sensitivity of 14 pm/℃. These results indicate that the prepared Er
3+
-doped fluortellurite glass microsphere cavity may find potential applications in low threshold lasers and high-sensitivity temperature sensors.
玻璃微球Er3+掺杂氟碲酸盐温度传感
glass microspheresEr3+-dopedfluortelluritetemperature sensing
LI A Z, ZHANG J Q, ZHANG M, et al. Effect of Tm3+ concentration on the emission wavelength shift in Tm3+-doped silica microsphere lasers [J]. Opt. Lett., 2018, 43(18): 4325-4328. doi: 10.1364/ol.43.004325http://dx.doi.org/10.1364/ol.43.004325
HARRIS J S Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks? [J]. IEEE J. Sel. Top. Quantum Electron., 2000, 6(6): 1145-1160. doi: 10.1109/2944.902163http://dx.doi.org/10.1109/2944.902163
MORI A. Tellurite-based fibers and their applications to optical communication networks [J]. J. Ceram. Soc. Japan, 2008, 116(1358): 1040-1051. doi: 10.2109/jcersj2.116.1040http://dx.doi.org/10.2109/jcersj2.116.1040
ZHANG C R, DUAN J J, QIN F F, et al. CsPbBr3 interconnected microwire structure: temperature-related photoluminescence properties and its lasing action [J]. J. Mater. Chem. C, 2019, 7(34): 10454-10459. doi: 10.1039/c9tc02913chttp://dx.doi.org/10.1039/c9tc02913c
曹晶, MATTHIEU L, FRANÇOIS B, 等. 飞秒激光调控非线性光学晶体和周期性纳米结构取向 [J]. 激光与光电子学进展, 2022, 59(15): 1516001-1-9. doi: 10.3788/LOP202259.1516001http://dx.doi.org/10.3788/LOP202259.1516001
CAO J, MATTHIEU L, FRANÇOIS B, et al. Orientable nonlinear optical crystals and periodic nanostructure by femtosecond laser irradiation [J]. Laser Optoelectron. Prog., 2022, 59(15): 1516001-1-9. (in Chinese). doi: 10.3788/LOP202259.1516001http://dx.doi.org/10.3788/LOP202259.1516001
AVINO S, KRAUSE A, ZULLO R, et al. Direct sensing in liquids using whispering-gallery-mode droplet resonators [J]. Adv. Opt. Mater., 2014, 2(12): 1155-1159. doi: 10.1002/adom.201400322http://dx.doi.org/10.1002/adom.201400322
BASHAR S B, WU C X, SUJA M, et al. Electrically pumped whispering gallery mode lasing from Au/ZnO microwire Schottky junction [J]. Adv. Opt. Mater., 2016, 4(12): 2063-2067. doi: 10.1002/adom.201600513http://dx.doi.org/10.1002/adom.201600513
CAI M, PAINTER O, VAHALA K J, et al. Fiber-coupled microsphere laser [J]. Opt. Lett., 2000, 25(19): 1430-1432. doi: 10.1364/ol.25.001430http://dx.doi.org/10.1364/ol.25.001430
SANDOGHDAR V, TREUSSART F, HARE J, et al. Very low threshold whispering-gallery-mode microsphere laser [J]. Phys. Rev. A, 1996, 54(3): R1777(R)-1-4. doi: 10.1103/physreva.54.r1777http://dx.doi.org/10.1103/physreva.54.r1777
FERRARI J L, LIMA K O, MAIA L J Q, et al. Broadband NIR emission in sol-gel Er3+-activated SiO2-Ta2O5 glass ceramic planar and channel waveguides for optical application [J]. J. Nanosci. Nanotechnol., 2011, 11(3): 2540-2544. doi: 10.1166/jnn.2011.3565http://dx.doi.org/10.1166/jnn.2011.3565
SEDDON A B, TANG Z Q, FURNISS D, et al. Progress in rare-earth-doped mid-infrared fiber lasers [J]. Opt. Express, 2010, 18(25): 26704-26719. doi: 10.1364/oe.18.026704http://dx.doi.org/10.1364/oe.18.026704
尹朋伟, 李彦潮, 赵文凯, 等. 中红外稀土掺杂碲酸盐玻璃和光纤 [J]. 发光学报, 2022, 43(11): 1705-1720. doi: 10.37188/CJL.20220263http://dx.doi.org/10.37188/CJL.20220263
YIN P W, LI Y C, ZHAO W K. et al. Mid-IR rare earth doped tellurite glass and optical fiber [J]. Chin. J. Lumin., 2022, 43(11): 1705-1720. (in Chinese). doi: 10.37188/CJL.20220263http://dx.doi.org/10.37188/CJL.20220263
FU S J, ZHU X S, WANG J F, et al. L-band wavelength-tunable Er3+-doped tellurite fiber lasers [J]. J. Lightw. Technol., 2020, 38(6): 1435-1438. doi: 10.1109/jlt.2019.2955314http://dx.doi.org/10.1109/jlt.2019.2955314
WANG W C, ZHOU B, XU S H, et al. Recent advances in soft optical glass fiber and fiber lasers [J]. Prog. Mater. Sci., 2019, 101: 90-171. doi: 10.1016/j.pmatsci.2018.11.003http://dx.doi.org/10.1016/j.pmatsci.2018.11.003
MAAOUI A, HAOUARI M, MOHAMED N B H, et al. Removal of hydroxyl groups from Er3+/Yb3+ codoped flurotellurite glasses [J]. Mater. Res. Bull., 2017, 93: 325-332. doi: 10.1016/j.materresbull.2017.05.020http://dx.doi.org/10.1016/j.materresbull.2017.05.020
NAZABAL V, TODOROKI S, NUKUI A, et al. Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties [J]. J. Non⁃Cryst. Solids, 2003, 325(1-3): 85-102. doi: 10.1016/s0022-3093(03)00313-2http://dx.doi.org/10.1016/s0022-3093(03)00313-2
CHE K J, YANG Y D, HUANG Y Z. Mode characteristics for square resonators with a metal confinement layer [J]. IEEE J. Quantum Electron., 2010, 46(3): 414-420. doi: 10.1109/jqe.2009.2031616http://dx.doi.org/10.1109/jqe.2009.2031616
BRAGINSKY V B, GORODETSKY M L, ILCHENKO V S. Quality-factor and nonlinear properties of optical whispering-gallery modes [J]. Phys. Lett. A, 1989, 137(7-8): 393-397. doi: 10.1016/0375-9601(89)90912-2http://dx.doi.org/10.1016/0375-9601(89)90912-2
BORSELLI M, JOHNSON T J, PAINTER O. Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment [J]. Opt. Express, 2005, 13(5): 1515-1530. doi: 10.1364/opex.13.001515http://dx.doi.org/10.1364/opex.13.001515
FU X P, FU X H, CHEN Y Y, et al. Optically pumped monolayer MoSe2 excitonic lasers from whispering gallery mode microcavities [J]. J. Phys. Chem. Lett., 2020, 11(2): 541-547. doi: 10.1021/acs.jpclett.9b03589http://dx.doi.org/10.1021/acs.jpclett.9b03589
FERNANDEZ-BRAVO A, YAO K Y, BARNARD E S, et al. Continuous-wave upconverting nanoparticle microlasers [J]. Nat. Nanotechnol., 2018, 13: 572-577. doi: 10.1038/s41565-018-0161-8http://dx.doi.org/10.1038/s41565-018-0161-8
GRIVAS C, LI C Y, ANDREAKOU P, et al. Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals [J]. Nat. Commun., 2013, 4: 2376. doi: 10.1038/ncomms3376http://dx.doi.org/10.1038/ncomms3376
CARMON T, YANG L, VAHALA K J. Dynamical thermal behavior and thermal self-stability of microcavities [J]. Opt. Express, 2004, 12(20): 4742-4750. doi: 10.1364/opex.12.004742http://dx.doi.org/10.1364/opex.12.004742
林晓鋆, 林德泉, 廖廷俤, 等. 光学微球腔的热光效应用于温度传感器研究 [J]. 光子学报, 2020, 49(3): 0314004-1-10. doi: 10.3788/gzxb20204903.0314004http://dx.doi.org/10.3788/gzxb20204903.0314004
LIN X Y, LIN D Q, LIAO T D. et al. Thermo-optic effect of optical microsphere cavity for temperature sensor research [J]. Acta Photon. Sinica, 2020, 49(3): 0314004-1-10. (in Chinese). doi: 10.3788/gzxb20204903.0314004http://dx.doi.org/10.3788/gzxb20204903.0314004
PÉREZ-RODRÍGUEZ C, LABRADOR-PÁEZ L, MARTÍN I R, et al. Temperature response of the whispering gallery mode resonances from the green upconversion emission of an Er3+-Yb3+ co-doped microsphere [J]. Laser Phys. Lett., 2015, 12(4): 046003-1-7. doi: 10.1088/1612-2011/12/4/046003http://dx.doi.org/10.1088/1612-2011/12/4/046003
PAZ-BUCLATIN F, PERERA-SUÁREZ Y, MARTÍN I R, et al. Experimental and numerical validation of whispering gallery resonators as optical temperature sensors [J]. Sensors, 2022, 22(20): 7831. doi: 10.3390/s22207831http://dx.doi.org/10.3390/s22207831
DING H Z, HUANG Q, BAI S C, et al. Er3+-doped fluorotellurite glass microsphere lasers with ultra-low threshold [J]. Infrared Phys. Technol., 2022, 125: 104294. doi: 10.1016/j.infrared.2022.104294http://dx.doi.org/10.1016/j.infrared.2022.104294
PENG X, SONG F, KUWATA-GONOKAMI M, et al. Temperature dependence of the wavelength and threshold of fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser [J]. Appl. Phys. Lett., 2003, 83(26): 5380-5382. doi: 10.1063/1.1637454http://dx.doi.org/10.1063/1.1637454
0
浏览量
292
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构