浏览全部资源
扫码关注微信
北京理工大学 光电学院, 北京 100081
[ "王珉(1998-),男,上海人,硕士研究生,2020年于北京理工大学获得学士学位,主要从事模板法制备无铅钙钛矿材料的研究。 E-mail: 3120200574@bit.edu.cn" ]
[ "陈冰昆(1983-),男,河北邯郸人,博士,副教授,博士生导师,2013年于北京理工大学获得博士学位,主要从事绿色环保型纳米光电材料与器件的 研究。 E-mail: chenbk@bit.edu.cn" ]
纸质出版日期:2023-05-05,
收稿日期:2022-11-21,
修回日期:2022-12-13,
移动端阅览
王珉,吴亚锋,郑堃等.Cs3Cu2I5制备与光电应用研究进展[J].发光学报,2023,44(05):801-818.
WANG Min,WU Yafeng,ZHENG Kun,et al.Synthesis and Optoelectronic Applications of Cs3Cu2I5[J].Chinese Journal of Luminescence,2023,44(05):801-818.
王珉,吴亚锋,郑堃等.Cs3Cu2I5制备与光电应用研究进展[J].发光学报,2023,44(05):801-818. DOI: 10.37188/CJL.20220395.
WANG Min,WU Yafeng,ZHENG Kun,et al.Synthesis and Optoelectronic Applications of Cs3Cu2I5[J].Chinese Journal of Luminescence,2023,44(05):801-818. DOI: 10.37188/CJL.20220395.
铅基卤化物钙钛矿材料具有优异的光电性质,在光电器件中被广泛应用,包括太阳能电池、发光二极管(LED)、光电探测器、激光器等。但是,材料的低稳定性与铅的毒性成为其进一步商业化进程的绊脚石,因此发展全无机非铅卤化物钙钛矿及其衍生物成为目前的研究热点之一。Cs
3
Cu
2
I
5
是近期发展起来的新型全无机非铅钙钛矿衍生物,因其具有无毒、良好的环境稳定性、优异的光学性能等优势,在诸多领域具有广阔的应用前景。本文总结了Cs
3
Cu
2
I
5
单晶、纳米晶、粉末、薄膜的制备方法,详细分析了其物理特性,归纳了其在LED、紫外光电探测、闪烁体等领域的应用,并对其在光电领域面临的挑战及前景进行了展望。
Lead halide perovskites have a wide range of application prospects in optoelectronic devices, including solar cells, light-emitting diodes(LEDs), photodetectors, lasers,
etc
. However, the poor material stability and the inherent toxicity of lead have hindered its further commercialization. Therefore, all-inorganic lead-free halide perovskites and their derivatives have become one of the research hotspots. Cs
3
Cu
2
I
5
is a new all-inorganic lead-free halide perovskite derivative, which allows the possibility to be applied in a variety of fields due to its nontoxicity, excellent optical properties and good stability under ambient conditions. This article introduces the various synthesis methods, physical properties and the applications in LEDs, ultraviolet photodetectors, scintillators and other fields of Cs
3
Cu
2
I
5
. In addition, the challenges and prospects of Cs
3
Cu
2
I
5
in optoelectronic fields are presented.
非铅钙钛矿Cs3Cu2I5自限激子发光二极管光电探测
perovskiteCs3Cu2I5self-trapped excitionslight⁃emitting diode(LED)photodetector
AKKERMAN Q A, RAINÒ G, KOVALENKO M V, et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals [J]. Nat. Mater., 2018, 17(5): 394-405. doi: 10.1038/s41563-018-0018-4http://dx.doi.org/10.1038/s41563-018-0018-4
KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals [J]. Science, 2017, 358(6364): 745-750. doi: 10.1126/science.aam7093http://dx.doi.org/10.1126/science.aam7093
SHAMSI J, URBAN A S, IMRAN M, et al. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties [J]. Chem. Rev., 2019, 119(5): 3296-3348. doi: 10.1021/acs.chemrev.8b00644http://dx.doi.org/10.1021/acs.chemrev.8b00644
GRÄTZEL M. The light and shade of perovskite solar cells [J]. Nat. Mater., 2014, 13(9): 838-842. doi: 10.1038/nmat4065http://dx.doi.org/10.1038/nmat4065
GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells [J]. Nat. Photon., 2014, 8(7): 506-514. doi: 10.1038/nphoton.2014.134http://dx.doi.org/10.1038/nphoton.2014.134
GHOSH S, SHI Q, PRADHAN B, et al. Phonon coupling with excitons and free carriers in formamidinium lead bromide perovskite nanocrystals [J]. J. Phys. Chem. Lett., 2018, 9(15): 4245-4250. doi: 10.1021/acs.jpclett.8b01729http://dx.doi.org/10.1021/acs.jpclett.8b01729
BRENNER T M, EGGER D A, KRONIK L, et al. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties [J]. Nat. Rev. Mater., 2016, 1(1): 15007-1-16. doi: 10.1038/natrevmats.2015.7http://dx.doi.org/10.1038/natrevmats.2015.7
FU Y P, ZHU H M, SCHRADER A W, et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability [J]. Nano Lett., 2016, 16(2): 1000-1008. doi: 10.1021/acs.nanolett.5b04053http://dx.doi.org/10.1021/acs.nanolett.5b04053
ZHU H M, FU Y P, MENG F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors [J]. Nat. Mater., 2015, 14(6): 636-642. doi: 10.1038/nmat4271http://dx.doi.org/10.1038/nmat4271
BYUN J, CHO H, WOLF C, et al. Efficient visible quasi-2D perovskite light-emitting diodes [J]. Adv. Mater., 2016, 28(34): 7515-7520. doi: 10.1002/adma.201601369http://dx.doi.org/10.1002/adma.201601369
SEO H K, KIM H, LEE J, et al. Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode [J]. Adv. Mater., 2017, 29(12): 1605587-1-6. doi: 10.1002/adma.201605587http://dx.doi.org/10.1002/adma.201605587
WANG H, KIM D H. Perovskite-based photodetectors: materials and devices [J]. Chem. Soc. Rev., 2017, 46(17): 5204-5236. doi: 10.1039/c6cs00896hhttp://dx.doi.org/10.1039/c6cs00896h
GU C, LEE J S. Flexible hybrid organic-inorganic perovskite memory [J]. ACS Nano, 2016, 10(5): 5413-5418. doi: 10.1021/acsnano.6b01643http://dx.doi.org/10.1021/acsnano.6b01643
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. doi: 10.1021/ja809598rhttp://dx.doi.org/10.1021/ja809598r
JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells [J]. Nature, 2021, 592(7854): 381-385. doi: 10.1038/s41586-021-03406-5http://dx.doi.org/10.1038/s41586-021-03406-5
KIM J S, HEO J M, PARK G S, et al. Ultra-bright, efficient and stable perovskite light-emitting diodes [J]. Nature, 2022, 611(7937): 688-694. doi: 10.1038/s41586-022-05304-whttp://dx.doi.org/10.1038/s41586-022-05304-w
LIU Z, QIU W D, PENG X M, et al. Perovskite light-emitting diodes with eqe exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation [J]. Adv. Mater., 2021, 33(43): 2103268-1-9. doi: 10.1002/adma.202103268http://dx.doi.org/10.1002/adma.202103268
LEIJTENS T, EPERON G E, NOEL N K, et al. Stability of metal halide perovskite solar cells [J]. Adv. Energy Mater., 2015, 5(20): 1500963. doi: 10.1002/aenm.201500963http://dx.doi.org/10.1002/aenm.201500963
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779http://dx.doi.org/10.1021/nl5048779
GHOSH S, PRADHAN B. Lead-free metal halide perovskite nanocrystals: challenges, applications, and future aspects [J]. Chemnanomat, 2019, 5(3): 300-312. doi: 10.1002/cnma.201800645http://dx.doi.org/10.1002/cnma.201800645
XIAO Z W, SONG Z N, YAN Y F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives [J]. Adv. Mater., 2019, 31(47): 1803792-1-22. doi: 10.1002/adma.201803792http://dx.doi.org/10.1002/adma.201803792
CREASON T D, YANGUI A, ROCCANOVA R, et al. Rb2CuX3 (X = Cl, Br): 1D all-inorganic copper halides with ultrabright blue emission and up-conversion photoluminescence [J]. Adv. Opt. Mater., 2020, 8(2): 1901338-1-6. doi: 10.1002/adom.201901338http://dx.doi.org/10.1002/adom.201901338
LIN R C, GUO Q L, ZHU Q, et al. All-inorganic CsCu2I3 single crystal with high-PLQY (≈15.7%) intrinsic white-light emission via strongly localized 1D excitonic recombination [J]. Adv. Mater., 2019, 31(46): 1905079-1-7. doi: 10.1002/adma.201905079http://dx.doi.org/10.1002/adma.201905079
YANG J, KANG W, LIU Z Z, et al. High-Performance deep ultraviolet photodetector based on a one-dimensional lead-free halide perovskite CsCu2I3 film with high stability [J]. J. Phys. Chem. Lett., 2020, 11(16): 6880-6886. doi: 10.1021/acs.jpclett.0c01832http://dx.doi.org/10.1021/acs.jpclett.0c01832
YANG P, LIU G N, LIU B D, et al. All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence [J]. Chem. Commun., 2018, 54(82): 11638-11641. doi: 10.1039/c8cc07118ghttp://dx.doi.org/10.1039/c8cc07118g
SINGHAL N, CHAKRABORTY R, GHOSH P, et al. Low-bandgap Cs4CuSb2Cl12 layered double perovskite: synthesis, reversible thermal changes, and magnetic interaction [J]. Chem. Asian J., 2018, 13(16): 2085-2092. doi: 10.1002/asia.201800635http://dx.doi.org/10.1002/asia.201800635
WANG X D, MIAO N H, LIAO J F, et al. The top-down synthesis of single-layered Cs4CuSb2Cl12 halide perovskite nanocrystals for photoelectrochemical application [J]. Nanoscale, 2019, 11(12): 5180-5187. doi: 10.1039/c9nr00375dhttp://dx.doi.org/10.1039/c9nr00375d
苏彬彬, 夏志国. 新兴零维金属卤化物的光致发光与应用研究进展 [J]. 发光学报, 2021, 42(6): 733-754. doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
SU B B, XIA Z G. Research progresses of photoluminescence and application for emerging zero-dimensional metal halides luminescence material [J]. Chin. J. Lumin., 2021, 42(6): 733-754. (in Chinese). doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
JUN T, SIM K, IIMURA S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure [J]. Adv. Mater., 2018, 30(43): 1804547-1-6. doi: 10.1002/adma.201804547http://dx.doi.org/10.1002/adma.201804547
BIGALKE K P, HANS A, HARTL H. Synthese und strukturuntersuchungen von iodocupraten(Ⅰ). Ⅸ. Synthese und kristallstrukturen von Cs3Cu2I5 und RbCu2I3 [J]. Z. Anorg. Allg. Chem., 1988, 563(1): 96-104. doi: 10.1002/zaac.19885630114http://dx.doi.org/10.1002/zaac.19885630114
WOJAKOWSKA A, GÓRNIAK A, KUZNETSOV A Y, et al. Phase diagram of the system copper(Ⅰ) iodide + cesium iodide [J]. J. Chem. Eng. Data, 2003, 48(3): 468-471. doi: 10.1021/je020188xhttp://dx.doi.org/10.1021/je020188x
GU Y Z, YAO X, GENG H X, et al. Highly transparent, dual-color emission, heterophase Cs3Cu2I5/CsCu2I3 nanolayer for transparent luminescent solar concentrators [J]. ACS Appl. Mater. Interfaces, 2021, 13(34): 40798-40805. doi: 10.1021/acsami.1c07686http://dx.doi.org/10.1021/acsami.1c07686
CHENG P F, SUN L, FENG L, et al. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals [J]. Angew. Chem. Int. Ed., 2019, 58(45): 16087-16091. doi: 10.1002/anie.201909129http://dx.doi.org/10.1002/anie.201909129
XIE L L, CHEN B K, ZHANG F, et al. Highly luminescent and stable lead-free cesium copper halide perovskite powders for UV-pumped phosphor-converted light-emitting diodes [J]. Photon. Res., 2020, 8(6): 768-775. doi: 10.1364/prj.387707http://dx.doi.org/10.1364/prj.387707
JIANG T, WANG J Q, XIE L L, et al. In situ fabrication of lead-free Cs3Cu2I5 nanostructures embedded in poly(vinylidene fluoride) electrospun fibers for polarized emission [J]. ACS Appl. Nano Mater., 2022, 5(1): 508-516. doi: 10.1021/acsanm.1c03323http://dx.doi.org/10.1021/acsanm.1c03323
ZHAO X, JIN T, GAO W R, et al. Embedding Cs3Cu2I5 scintillators into anodic aluminum oxide matrix for high-resolution X-ray imaging [J]. Adv. Opt. Mater., 2021, 9(24): 2101194-1-8. doi: 10.1002/adom.202101194http://dx.doi.org/10.1002/adom.202101194
LI Y Y, VASHISHTHA P, ZHOU Z C, et al. Room temperature synthesis of stable, printable Cs3Cu2X5 (X = I, Br/I, Br, Br/Cl, Cl) colloidal nanocrystals with near-unity quantum yield green emitters (X = Cl) [J]. Chem. Mater., 2020, 32(13): 5515-5524. doi: 10.1021/acs.chemmater.0c00280http://dx.doi.org/10.1021/acs.chemmater.0c00280
LIN R C, ZHU Q, GUO Q L, et al. Dual self-trapped exciton emission with ultrahigh photoluminescence quantum yield in CsCu2I3 and Cs3Cu2I5 perovskite single crystals [J]. J. Phys. Chem. C, 2020, 124(37): 20469-20476. doi: 10.1021/acs.jpcc.0c07435http://dx.doi.org/10.1021/acs.jpcc.0c07435
GUO Z H, LI J Z, GAO Y, et al. Multiphoton absorption in low-dimensional cesium copper iodide single crystals [J]. J. Mater. Chem. C, 2020, 8(47): 16923-16929. doi: 10.1039/d0tc04061dhttp://dx.doi.org/10.1039/d0tc04061d
ZHANG F, ZHAO Z H, CHEN B K, et al. Strongly emissive lead-free 0D Cs3Cu2I5 perovskites synthesized by a room temperature solvent evaporation crystallization for down-conversion light-emitting devices and fluorescent inks [J]. Adv. Opt. Mater., 2020, 8(8): 1901723-1-8. doi: 10.1002/adom.201901723http://dx.doi.org/10.1002/adom.201901723
XU Q, WANG J, ZHANG Q D, et al. Solution-processed lead-free bulk 0D Cs3Cu2I5 single crystal for indirect gamma-ray spectroscopy application [J]. Photon. Res., 2021, 9(3): 351-356. doi: 10.1364/prj.412959http://dx.doi.org/10.1364/prj.412959
YAO Q, LI J M, LI X S, et al. High-quality Cs3Cu2I5 single-crystal is a fast-decaying scintillator [J]. Adv. Opt. Mater., 2022, 10(23): 2201161-1-11. doi: 10.1002/adom.202201161http://dx.doi.org/10.1002/adom.202201161
YUAN D S. Air-stable bulk halide single-crystal scintillator Cs3Cu2I5 by melt growth: intrinsic and Tl doped with high light yield [J]. ACS Appl. Mater. Interfaces, 2020, 12(34): 38333-38340. doi: 10.1021/acsami.0c09047http://dx.doi.org/10.1021/acsami.0c09047
YAN J J, MA J L, ZHANG M Y, et al. Dual-source vapor-processed blue-emissive cesium copper iodine microplatelets with high crystallinity and stability [J]. J. Mater. Chem. C, 2021, 9(37): 12535-12544. doi: 10.1039/d1tc03578ahttp://dx.doi.org/10.1039/d1tc03578a
VASHISHTHA P, NUTAN G V, GRIFFITH B E, et al. Cesium copper iodide tailored nanoplates and nanorods for blue, yellow, and white emission [J]. Chem. Mater., 2019, 31(21): 9003-9011. doi: 10.1021/acs.chemmater.9b03250http://dx.doi.org/10.1021/acs.chemmater.9b03250
LUO Z S, LI Q, ZHANG L M, et al. 0D Cs3Cu2X5 (X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties [J]. Small, 2020, 16(3): 1905226-1-5. doi: 10.1002/smll.201905226http://dx.doi.org/10.1002/smll.201905226
WANG L T, SHI Z F, MA Z Z, et al. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h [J]. Nano Lett., 2020, 20(5): 3568-3576. doi: 10.1021/acs.nanolett.0c00513http://dx.doi.org/10.1021/acs.nanolett.0c00513
LIAN L Y, ZHENG M Y, ZHANG W Z, et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons [J]. Adv. Sci., 2020, 7(11): 2000195-1-9. doi: 10.1002/advs.202000195http://dx.doi.org/10.1002/advs.202000195
GAO F, ZHU X N, FENG Q S, et al. Deep-blue emissive Cs3Cu2I5 perovskites nanocrystals with 96.6% quantum yield via InI3-assisted synthesis for light-emitting device and fluorescent ink applications [J]. Nano Energy, 2022, 98: 107270. doi: 10.1016/j.nanoen.2022.107270http://dx.doi.org/10.1016/j.nanoen.2022.107270
LI C X, CHO S B, KIM D H, et al. Monodisperse lead-free perovskite Cs3Cu2I5 nanocrystals: role of the metal halide additive [J]. Chem. Mater., 2022, 34(15): 6921-6932. doi: 10.1021/acs.chemmater.2c01318http://dx.doi.org/10.1021/acs.chemmater.2c01318
HU X D, LI Y L, WU Y, et al. One-pot synthesis of Cs3Cu2I5 nanocrystals based on thermodynamic equilibrium [J]. Mater. Chem. Front., 2021, 5(16): 6152-6159. doi: 10.1039/d1qm00481fhttp://dx.doi.org/10.1039/d1qm00481f
ZHANG Y Q, HE Y, TANG Z Y, et al. Spontaneous formation of lead-free Cs3Cu2I5 quantum dots in metal-organic-frameworks with deep-blue emission [J]. Small, 2022, 18(22): 2107161. doi: 10.1002/smll.202107161http://dx.doi.org/10.1002/smll.202107161
SEBASTIA-LUNA P, NAVARRO-ALAPONT J, SESSOLO M, et al. Solvent-free synthesis and thin-film deposition of cesium copper halides with bright blue photoluminescence [J]. Chem. Mater., 2019, 31(24): 10205-10210. doi: 10.1021/acs.chemmater.9b03898http://dx.doi.org/10.1021/acs.chemmater.9b03898
XIE L L, CHEN B K, ZHANG F, et al. Stability enhancement of Cs3Cu2I5 powder with high blue emission realized by Na+ doping strategy [J]. J. Lumin., 2021, 239: 118333. doi: 10.1016/j.jlumin.2021.118333http://dx.doi.org/10.1016/j.jlumin.2021.118333
FANG S F, WANG Y, LI H X, et al. Rapid synthesis and mechanochemical reactions of cesium copper halides for convenient chromaticity tuning and efficient white light emission [J]. J. Mater. Chem. C, 2020, 8(14): 4895-4901. doi: 10.1039/d0tc00015ahttp://dx.doi.org/10.1039/d0tc00015a
ZHAO Z H, LI X T, XIE L L, et al. Phase control in the synthesis of cesium copper iodide compounds for their photoluminescence and radioluminescence study [J]. J. Lumin., 2022, 241: 118482-1-5. doi: 10.1016/j.jlumin.2021.118482http://dx.doi.org/10.1016/j.jlumin.2021.118482
ROCCANOVA R, YANGUI A, NHALIL H, et al. Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5-xIx (0≤x≤5) [J]. ACS Appl. Electron. Mater., 2019, 1(3): 269-274. doi: 10.1021/acsaelm.9b00015http://dx.doi.org/10.1021/acsaelm.9b00015
CHEN H J, PINA J M, YUAN F L, et al. Multiple self-trapped emissions in the lead-free halide Cs3Cu2I5 [J]. J. Phys. Chem. Lett., 2020, 11(11): 4326-4330. doi: 10.1021/acs.jpclett.0c01166http://dx.doi.org/10.1021/acs.jpclett.0c01166
HUANG X Y, SUN Q, DEVAKUMAR B. Facile low-temperature solid-state synthesis of efficient blue-emitting Cs3Cu2I5 powder phosphors for solid-state lighting [J]. Mater. Today Chem., 2020, 17: 100288-1-8. doi: 10.1016/j.mtchem.2020.100288http://dx.doi.org/10.1016/j.mtchem.2020.100288
DU P, LUO L H, CHENG W. Neoteric Mn2+-activated Cs3Cu2I5 dazzling yellow-emitting phosphors for white-LED [J]. J. Am. Ceram. Soc., 2020, 103(2): 1149-1155. doi: 10.1111/jace.16796http://dx.doi.org/10.1111/jace.16796
DU P, CAI P Q, LI W P, et al. Ratiometric optical thermometer based on the use of manganese(Ⅱ)-doped Cs3Cu2I5 thermochromic and fluorescent halides [J]. Microchim. Acta, 2019, 186(11): 730-1-7. doi: 10.1007/s00604-019-3881-zhttp://dx.doi.org/10.1007/s00604-019-3881-z
LI Y, SHI Z F, LIANG W Q, et al. Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites [J]. Mater. Horiz., 2020, 7(2): 530-540. doi: 10.1039/c9mh01371ghttp://dx.doi.org/10.1039/c9mh01371g
ZENG F J, GUO Y Y, HU W, et al. Green anti-solvent assisted crystallization strategy for air-stable uniform Cs3Cu2I5 perovskite films with highly efficient blue photoluminescence [J]. J. Lumin., 2020, 223: 117178-1-8. doi: 10.1016/j.jlumin.2020.117178http://dx.doi.org/10.1016/j.jlumin.2020.117178
ZENG F J, GUO Y Y, HU W, et al. Opportunity of the lead-free all-inorganic Cs3Cu2I5 perovskite film for memristor and neuromorphic computing applications [J]. ACS Appl. Mater. Interfaces, 2020, 12(20): 23094-23101. doi: 10.1021/acsami.0c03106http://dx.doi.org/10.1021/acsami.0c03106
LIANG W Q, SHI Z F, LI Y, et al. Strategy of all-inorganic Cs3Cu2I5/Si-core/shell nanowire heterojunction for stable and ultraviolet-enhanced broadband photodetectors with imaging capability [J]. ACS Appl. Mater. Interfaces, 2020, 12(33): 37363-37374. doi: 10.1021/acsami.0c10323http://dx.doi.org/10.1021/acsami.0c10323
ZHANG Z X, LI C, LU Y, et al. Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap [J]. J. Phys. Chem. Lett., 2019, 10(18): 5343-5350. doi: 10.1021/acs.jpclett.9b02390http://dx.doi.org/10.1021/acs.jpclett.9b02390
GU Y Z, YAO X, GENG H X, et al. Large-area, flexible, and dual-source co-evaporated Cs3Cu2I5 nanolayer to construct ultra-broadband photothermoelectric detector from visible to terahertz [J]. ACS Appl. Electron. Mater., 2022, 4(2): 663-671. doi: 10.1021/acsaelm.1c01060http://dx.doi.org/10.1021/acsaelm.1c01060
MA Z Z, SHI Z F, YANG D W, et al. High color-rendering index and stable white light-emitting diodes by assembling two broadband emissive self-trapped excitons [J]. Adv. Mater., 2021, 33(2): 2001367-1-10. doi: 10.1002/adma.202001367http://dx.doi.org/10.1002/adma.202001367
HALCROW M A. Jahn-Teller distortions in transition metal compounds, and their importance in functional molecular and inorganic materials [J]. Chem. Soc. Rev., 2013, 42(4): 1784-1795. doi: 10.1039/c2cs35253bhttp://dx.doi.org/10.1039/c2cs35253b
XIAO Z W, DU K Z, MENG W W, et al. Chemical origin of the stability difference between copper(Ⅰ)- and silver(Ⅰ)- based halide double perovskites [J]. Angew. Chem. Int. Ed, 2017, 56(40): 12107-12111. doi: 10.1002/anie.201705113http://dx.doi.org/10.1002/anie.201705113
JUNG Y K, KIM S, KIM Y C, et al. Low Barrier for exciton self-trapping enables high photoluminescence quantum yield in Cs3Cu2I5 [J]. J. Phys. Chem. Lett., 2021, 12(34): 8447-8452. doi: 10.1021/acs.jpclett.1c02252http://dx.doi.org/10.1021/acs.jpclett.1c02252
LIAN X J, WANG X, LING Y C, et al. Light emitting diodes based on inorganic composite halide perovskites [J]. Adv. Funct. Mater., 2019, 29(5): 1807345-1-7. doi: 10.1002/adfm.201807345http://dx.doi.org/10.1002/adfm.201807345
CHO H, KIM Y H, WOLF C, et al. Improving the stability of metal halide perovskite materials and light-emitting diodes [J]. Adv. Mater., 2018, 30(42): 1704587-1-24. doi: 10.1002/adma.201704587http://dx.doi.org/10.1002/adma.201704587
SAPAROV B, SUN J P, MENG W W, et al. Thin-film deposition and characterization of a sn-deficient perovskite derivative Cs2SnI6 [J]. Chem. Mater., 2016, 28(7): 2315-2322. doi: 10.1021/acs.chemmater.6b00433http://dx.doi.org/10.1021/acs.chemmater.6b00433
CHEN S H, MAO X N, ZHONG Q X, et al. Kinetics-controlled interfacial synthesis of janus and patchy heterostructures based on perovskite nanocrystals [J]. Adv. Opt. Mater., 2022, 10(17): 2200687. doi: 10.1002/adom.202200687http://dx.doi.org/10.1002/adom.202200687
GUO Y, CHEN B, REN X L, et al. Recent advances in all-inorganic zero-dimensional metal halides [J]. ChemPlusChem, 2021, 86(12): 1577-1585. doi: 10.1002/cplu.202100459http://dx.doi.org/10.1002/cplu.202100459
HUI Y S Q, CHEN S Y, LIN R C, et al. Photophysics in Cs3Cu2I5 and CsCu2I3 [J]. Mater. Chem. Front., 2021, 5(19): 7088-7107. doi: 10.1039/d1qm00552ahttp://dx.doi.org/10.1039/d1qm00552a
CUI W R, ZHAO J X, WANG L J, et al. Unraveling the phase transition and luminescence tuning of Pb-free Cs-Cu-I perovskites enabled by reaction temperature and polar solvent [J]. J. Phys. Chem. Lett., 2022, 13(22): 4856-4863. doi: 10.1021/acs.jpclett.2c01039http://dx.doi.org/10.1021/acs.jpclett.2c01039
JUN T, HANDA T, SIM K, et al. One-step solution synthesis of white-light-emitting films via dimensionality control of the Cs-Cu-I system [J]. APL Mater., 2019, 7(11): 111113-1-7. doi: 10.1063/1.5127300http://dx.doi.org/10.1063/1.5127300
CHEN H, ZHU L, XUE C, et al. Efficient and bright warm-white electroluminescence from lead-free metal halides [J]. Nat. Commun., 2021, 12(1): 1421-1-7. doi: 10.1038/s41467-021-21638-xhttp://dx.doi.org/10.1038/s41467-021-21638-x
LIANG W Q, WANG L T, LI Y, et al. Stable and ultraviolet-enhanced broadband photodetectors based on Si nanowire arrays-Cs3Cu2I5 nanocrystals hybrid structures [J]. Mater. Today Phys., 2021, 18: 100398. doi: 10.1016/j.mtphys.2021.100398http://dx.doi.org/10.1016/j.mtphys.2021.100398
LV J N, LU X Y, LI X, et al. Epitaxial growth of lead-free 2D Cs3Cu2I5 perovskites for high-performance UV photodetectors [J]. Small, 2022, 18(27): 2201715. doi: 10.1002/smll.202201715http://dx.doi.org/10.1002/smll.202201715
CHEN X, LIU K W, ZHANG Z Z, et al. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film schottky junction [J]. ACS Appl. Mater. Interfaces, 2016, 8(6): 4185-4191. doi: 10.1021/acsami.5b11956http://dx.doi.org/10.1021/acsami.5b11956
ZHAO X L, ZHI Y S, CUI W, et al. Characterization of hexagonal ɛ-Ga1.8Sn0.2O3 thin films for solar-blind ultraviolet applications [J]. Opt. Mater., 2016, 62: 651-654. doi: 10.1016/j.optmat.2016.10.056http://dx.doi.org/10.1016/j.optmat.2016.10.056
HUSSAIN A A, RANA A K, RANJAN M. Air-stable lead-free hybrid perovskite employing self-powered photodetection with an electron/hole-conductor-free device geometry [J]. Nanoscale, 2019, 11(3): 1217-1227. doi: 10.1039/c8nr08959khttp://dx.doi.org/10.1039/c8nr08959k
LI W, XU Y X, WANG D, et al. Inorganic perovskite light emitting diodes with ZnO as the electron transport layer by direct atomic layer deposition [J]. Org. Electron., 2018, 57: 60-67. doi: 10.1016/j.orgel.2018.02.032http://dx.doi.org/10.1016/j.orgel.2018.02.032
SONG X F, LIU X H, YU D J, et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation [J]. ACS Appl. Mater. Interfaces, 2018, 10(3): 2801-2809. doi: 10.1021/acsami.7b14745http://dx.doi.org/10.1021/acsami.7b14745
ZHOU J E, AN K, HE P, et al. Solution-processed lead-free perovskite nanocrystal scintillators for high-resolution X-ray CT imaging [J]. Adv. Opt. Mater., 2021, 9(11): 2002144-1-8. doi: 10.1002/adom.202002144http://dx.doi.org/10.1002/adom.202002144
LI X M, CHEN J X, YANG D D, et al. Mn2+ induced significant improvement and robust stability of radioluminescence in Cs3Cu2I5 for high-performance nuclear battery [J]. Nat. Commun., 2021, 12(1): 3879-1-9. doi: 10.1038/s41467-021-24185-7http://dx.doi.org/10.1038/s41467-021-24185-7
WANG Q, ZHOU Q, NIKL M, et al. Highly Resolved X-ray imaging enabled by In(Ⅰ) doped perovskite-like Cs3Cu2I5 single crystal scintillator [J]. Adv. Opt. Mater., 2022, 10(11): 2200304 -1-8. doi: 10.1002/adom.202200304http://dx.doi.org/10.1002/adom.202200304
ZHANG Y H, SUN R J, OU X Y, et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens [J]. ACS Nano, 2019, 13(2): 2520-2525. doi: 10.1021/acsnano.8b09484http://dx.doi.org/10.1021/acsnano.8b09484
MADDALENA F, TJAHJANA L, XIE A Z, et al. Inorganic, organic, and perovskite halides with nanotechnology for high-light yield X- and γ-ray scintillators [J]. Crystal, 2019, 9(2): 88-1-29. doi: 10.3390/cryst9020088http://dx.doi.org/10.3390/cryst9020088
MAO R H, ZHANG L Y, ZHU R Y. Optical and scintillation properties of inorganic scintillators in high energy physics [J]. IEEE Trans. Nucl. Sci., 2008, 55(4): 2425-2431. doi: 10.1109/tns.2008.2000776http://dx.doi.org/10.1109/tns.2008.2000776
ZHANG F, LIANG W Q, WANG L T, et al. Moisture-induced reversible phase conversion of cesium copper iodine nanocrystals enables advanced anti-counterfeiting [J]. Adv. Funct. Mater., 2021, 31(47): 2105771-1-10. doi: 10.1002/adfm.202105771http://dx.doi.org/10.1002/adfm.202105771
WANG B Q, CHEN C, YANG X, et al. Pressure-assisted cooling to grow ultra-stable Cs3Cu2I5 and CsCu2I3 single crystals for solid-state lighting and visible light communication [J]. EcoMat, 2022, 4(2): e12184-1-11. doi: 10.1002/eom2.12184http://dx.doi.org/10.1002/eom2.12184
ZENG F J, TAN Y Q, HU W, et al. Impact of hydroiodic acid on resistive switching performance of lead-free Cs3Cu2I5 perovskite memory [J]. J. Phys. Chem. Lett., 2021, 12(7): 1973-1978. doi: 10.1021/acs.jpclett.0c03763http://dx.doi.org/10.1021/acs.jpclett.0c03763
JUNG Y K, HAN I T, KIM Y C, et al. Prediction of high thermoelectric performance in the low-dimensional metal halide Cs3Cu2I5 [J]. npj Comput. Mater., 2021, 7(1): 51-1-6. doi: 10.1038/s41524-021-00521-9http://dx.doi.org/10.1038/s41524-021-00521-9
LEE D, LEE S J, KIM J H, et al. Multimodal gas sensor detecting hydroxyl groups with phase transition based on eco-friendly lead-free metal halides [J]. Adv. Funct. Mater., 2022, 32(28): 2202207-1-10. doi: 10.1002/adfm.202202207http://dx.doi.org/10.1002/adfm.202202207
0
浏览量
294
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构