浏览全部资源
扫码关注微信
1.华侨大学材料科学与工程学院 发光材料与信息显示研究院, 福建 厦门 361021
2.中国工程物理研究院 化工材料研究所, 四川 成都 610200
[ "秦向前(1998-),男,重庆人,硕士研究生,2020年于重庆科技学院获得学士学位,主要从事绿光钙钛矿发光二极管等方面的研究。E⁃mail: 1004730041@qq.com" ]
[ "黎明亮(1995-),男,四川遂宁人,博士研究生,2018年于四川大学获得学士学位,主要从事钙钛矿发光二极管等方面的研究。E⁃mail: 1187708324@qq.com" ]
[ "魏展画(1989-),男,福建三明人,博士,教授,博士生导师,2015年于中国香港科技大学获得博士学位,主要从事新型能源光电材料与器件,特别是钙钛矿发光二极管和钙钛矿太阳能电池的研究。" ]
纸质出版日期:2023-03-05,
收稿日期:2022-10-25,
修回日期:2022-11-14,
扫 描 看 全 文
秦向前,黎明亮,赵亚萍等.新型钴基空穴传输层助力高效钙钛矿发光二极管[J].发光学报,2023,44(03):548-558.
QIN Xiangqian,LI Mingliang,ZHAO Yaping,et al.High-efficiency Perovskite Light-emitting Diodes via Novel Cobalt-based Hole Transporter Layer[J].Chinese Journal of Luminescence,2023,44(03):548-558.
秦向前,黎明亮,赵亚萍等.新型钴基空穴传输层助力高效钙钛矿发光二极管[J].发光学报,2023,44(03):548-558. DOI: 10.37188/CJL.20220377.
QIN Xiangqian,LI Mingliang,ZHAO Yaping,et al.High-efficiency Perovskite Light-emitting Diodes via Novel Cobalt-based Hole Transporter Layer[J].Chinese Journal of Luminescence,2023,44(03):548-558. DOI: 10.37188/CJL.20220377.
金属卤化物钙钛矿发光二极管(Perovskite light⁃emitting diodes, Pero⁃LEDs)器件结构中,空穴传输层(HTL)是影响Pero⁃LEDs效率的关键性因素之一。由于醋酸钴(Co(OAc)
2
)薄膜具有优异的光电特性,所以选其作为绿光Pero⁃LEDs的HTL。然而,纯的钴基底薄膜存在传输载流子能力较差、薄膜粗糙度较大等问题。因此,本文通过引入有机小分子添加剂乙醇胺(ETA)来有效调控传输层中Co
3+
/Co
2+
比例,提升传输层的导电能力。同时,因ETA的加入可以减缓退火过程中前驱体溶液的析出结晶速度,从而形成粗糙度较小的HTL薄膜,进而有利于形成高质量的钙钛矿薄膜。基于掺杂的HTL,其最优器件亮度高达45 207 cd/m
2
,最大外量子效率(EQE)达到15.08%,是一种性能较好的新型HTL。
In the device structure of metal halide perovskite light-emitting diodes (Pero-LEDs), the hole transport layer (HTL) is one of the critical factors affecting the efficiency of Pero-LEDs. Because cobalt acetate (Co(OAc)
2
) film has excellent photoelectric properties, it has been selected as the HTL for green Pero-LEDs. However, the pure cobalt-based HTL films have problems such as poor carrier transport ability and large film roughness. Therefore, in this paper, by introducing the organic small molecule additive ethanolamine (ETA), the proportion of Co
3+
/Co
2+
in the transport layer is effectively regulated, and the conductivity of the transport layer is improved. At the same time, the addition of ETA can slow down the crystallization process of HTL precursor solution during the annealing process, bringing in a transport layer film with lower roughness, which is conducive to the deposition of high-quality perovskite films. Based on the doped Co-based HTL films, the optimal device brightness reaches 45 207 cd/m
2
, and the maximum external quantum efficiency (EQE) reaches 15.08%, proving that the Co-based compound is a novel HTL with good device performance.
钙钛矿发光二极管醋酸钴乙醇胺空穴传输材料掺杂
perovskite LEDsCo(OAc)2ethanolaminehole transport layerdoping
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. doi: 10.1021/ja809598rhttp://dx.doi.org/10.1021/ja809598r
XIE L Q, LIN K B, LU J X, et al. Efficient and stable low-bandgap perovskite solar cells enabled by a CsPbBr3-cluster assisted bottom-up crystallization approach [J]. J. Am. Chem. Soc., 2019, 141(51): 20537-20546. doi: 10.1021/jacs.9b11546http://dx.doi.org/10.1021/jacs.9b11546
ZHAO Y, MA F, QU Z H, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells [J]. Science, 2022, 377(6605): 531-534. doi: 10.1126/science.abp8873http://dx.doi.org/10.1126/science.abp8873
DOU L T, YANG Y, YOU J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity [J]. Nat. Commun., 2014, 5: 5404-1-7. doi: 10.1038/ncomms6404http://dx.doi.org/10.1038/ncomms6404
FENG J G, GONG C, GAO H F, et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors [J]. Nat. Electron., 2018, 1(7): 404-410. doi: 10.1038/s41928-018-0101-5http://dx.doi.org/10.1038/s41928-018-0101-5
ZHAO Y J, QIU Y C, FENG J G, et al. Chiral 2D-perovskite nanowires for stokes photodetectors [J]. J. Am. Chem. Soc., 2021, 143(22): 8437-8445. doi: 10.1021/jacs.1c02675http://dx.doi.org/10.1021/jacs.1c02675
FENG J G, WANG J, FIERAMOSCA A, et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires [J]. Sci. Adv., 2021, 7(46): eabj6627. doi: 10.1126/sciadv.abj6627http://dx.doi.org/10.1126/sciadv.abj6627
QIN C J, SANDANAYAKA A S D, ZHAO C Y, et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films [J]. Nature, 2020, 585(7823): 53-57. doi: 10.1038/s41586-020-2621-1http://dx.doi.org/10.1038/s41586-020-2621-1
SU R, FIERAMOSCA A, ZHANG Q, et al. Perovskite semiconductors for room-temperature exciton-polaritonics [J]. Nat. Mater., 2021, 20(10): 1315-1324. doi: 10.1038/s41563-021-01035-xhttp://dx.doi.org/10.1038/s41563-021-01035-x
ZHANG Z Z, LIANG Y Q, HUANG H L, et al. Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6 [J]. Angew. Chem. Int. Ed., 2019, 58(22): 7263-7267. doi: 10.1002/anie.201900658http://dx.doi.org/10.1002/anie.201900658
XU Y, CAO M H, HUANG S M. Recent advances and perspective on the synthesis and photocatalytic application of metal halide perovskite nanocrystals [J]. Nano Res., 2021, 14(11): 3773-3794. doi: 10.1007/s12274-021-3362-7http://dx.doi.org/10.1007/s12274-021-3362-7
XIAO Z G, KERNER R A, ZHAO L F, et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites [J]. Nat. Photonics, 2017, 11(2): 108-115. doi: 10.1038/nphoton.2016.269http://dx.doi.org/10.1038/nphoton.2016.269
YUAN M J, QUAN L N, COMIN R, et al. Perovskite energy funnels for efficient light-emitting diodes [J]. Nat. Nanotechnol., 2016, 11(10): 872-877. doi: 10.1038/nnano.2016.110http://dx.doi.org/10.1038/nnano.2016.110
SWARNKAR A, MARSHALL A R, SANEHIRA E M, et al. Quantum dot⁃induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics [J]. Science, 2016, 354(6308): 92-95. doi: 10.1126/science.aag2700http://dx.doi.org/10.1126/science.aag2700
YANG B, ZHANG F Y, CHEN J S, et al. Ultrasensitive and fast all-inorganic perovskite-based photodetector via fast carrier diffusion [J]. Adv. Mater., 2017, 29(40): 1703758-1-8. doi: 10.1002/adma.201703758http://dx.doi.org/10.1002/adma.201703758
KIM Y H, KIM S, KAKEKHANI A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes [J]. Nat. Photonics, 2021, 15(2): 148-155. doi: 10.1038/s41566-020-00732-4http://dx.doi.org/10.1038/s41566-020-00732-4
MA D X, LIN K B, DONG Y T, et al. Distribution control enables efficient reduced-dimensional perovskite LEDs [J]. Nature, 2021, 599(7886): 594-598. doi: 10.1038/s41586-021-03997-zhttp://dx.doi.org/10.1038/s41586-021-03997-z
LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per ⁃cent [J]. Nature, 2018, 562(7726): 245-248. doi: 10.1038/s41586-018-0575-3http://dx.doi.org/10.1038/s41586-018-0575-3
LI M L, ZHAO Y P, QIN X Q, et al. Conductive phosphine oxide passivator enables efficient perovskite light-emitting diodes [J]. Nano Lett., 2022, 22(6): 2490-2496. doi: 10.1021/acs.nanolett.2c00276http://dx.doi.org/10.1021/acs.nanolett.2c00276
FENG W J, ZHAO Y P, LIN K B, et al. Polymer-assisted crystal growth regulation and defect passivation for efficient perovskite light-emitting diodes [J]. Adv. Funct. Mater., 2022, 32(34): 2203371-1-10. doi: 10.1002/adfm.202203371http://dx.doi.org/10.1002/adfm.202203371
FANG Z B, CHEN W J, SHI Y L, et al. Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20% [J]. Adv. Funct. Mater., 2020, 30(12): 1909754-1-9. doi: 10.1002/adfm.201909754http://dx.doi.org/10.1002/adfm.201909754
WANG Y K, YUAN F L, DONG Y T, et al. All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite [J]. Angew. Chem. Int. Ed., 2021, 60(29): 16164-16170. doi: 10.1002/anie.202104812http://dx.doi.org/10.1002/anie.202104812
XU W D, HU Q, BAI S, et al. Rational molecular passivation for high-performance perovskite light-emitting diodes [J]. Nat. Photonics, 2019, 13(6): 418-424. doi: 10.1038/s41566-019-0390-xhttp://dx.doi.org/10.1038/s41566-019-0390-x
ZHAO B D, BAI S, KIM V, et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes [J]. Nat. Photonics, 2018, 12(12): 783-789. doi: 10.1038/s41566-018-0283-4http://dx.doi.org/10.1038/s41566-018-0283-4
皮慧慧, 李国辉, 周博林, 等. 高效率钙钛矿量子点发光二极管研究进展 [J]. 发光学报, 2021, 42(5): 650-667. doi: 10.37188/CJL.20200406http://dx.doi.org/10.37188/CJL.20200406
PI H H, LI G H, ZHOU B L, et al. Progress of high-efficiency perovskite quantum dot light-emitting diodes [J]. Chin. J. Lumin., 2021, 42(5): 650-667. (in Chinese). doi: 10.37188/CJL.20200406http://dx.doi.org/10.37188/CJL.20200406
DONG Y T, WANG Y K, YUAN F L, et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots [J]. Nat. Nanotechnol., 2020, 15(8): 668-674. doi: 10.1038/s41565-020-0714-5http://dx.doi.org/10.1038/s41565-020-0714-5
KIM Y, JUNG E H, KIM G, et al. Sequentially fluorinated PTAA polymers for enhancing VOC of high-performance perovskite solar cells [J]. Adv. Energy Mater., 2018, 8(29): 1801668-1-9. doi: 10.1002/aenm.201801668http://dx.doi.org/10.1002/aenm.201801668
HOU Y, ZHANG H, CHEN W, et al. Inverted, environmentally stable perovskite solar cell with a novel low-cost and water-free PEDOT hole-extraction layer [J]. Adv. Energy Mater., 2015, 5(15): 1500543-1-7. doi: 10.1002/aenm.201500543http://dx.doi.org/10.1002/aenm.201500543
YANG L Y, CAI F L, YAN Y, et al. Conjugated small molecule for efficient hole transport in high-performance p-i-n type perovskite solar cells [J]. Adv. Funct. Mater., 2017, 27(31): 1702613-1-10. doi: 10.1002/adfm.201702613http://dx.doi.org/10.1002/adfm.201702613
WANG H R, YUAN H, YU J H, et al. Boosting the efficiency of NiOX-based perovskite light-emitting diodes by interface engineering [J]. ACS Appl. Mater. Interfaces, 2020, 12(47): 53528-53536. doi: 10.1021/acsami.0c16139http://dx.doi.org/10.1021/acsami.0c16139
CHOWDHURY T H, AKHTARUZZAMAN M, KAYESH M E, et al. Low temperature processed inverted planar perovskite solar cells by r-GO/CuSCN hole-transport bilayer with improved stability [J]. Solar Energy, 2018, 171: 652-657. doi: 10.1016/j.solener.2018.07.022http://dx.doi.org/10.1016/j.solener.2018.07.022
SEPALAGE G A, MEYER S, PASCOE A, et al. Copper(I) iodide as hole-conductor in planar perovskite solar cells: probing the origin of J⁃V hysteresis [J]. Adv. Funct. Mater., 2015, 25(35): 5650-5661. doi: 10.1002/adfm.201502541http://dx.doi.org/10.1002/adfm.201502541
LIN K B, YAN C Z, SABATINI R P, et al. Dual-phase regulation for high-efficiency perovskite light-emitting diodes [J]. Adv. Funct. Mater., 2022, 32(24): 2200350-1-9. doi: 10.1002/adfm.202200350http://dx.doi.org/10.1002/adfm.202200350
MENG H F, LIAO C T, DENG M, et al. 18.77% efficiency organic solar cells promoted by aqueous solution processed cobalt(Ⅱ) acetate hole transporting layer [J]. Angew. Chem. Int. Ed., 2021, 60(41): 22554-22561. doi: 10.1002/anie.202110550http://dx.doi.org/10.1002/anie.202110550
ZHENG F, WEN X M, BU T L, et al. Slow response of carrier dynamics in perovskite interface upon illumination [J]. ACS Appl. Mater. Interfaces, 2018, 10(37): 31452-31461. doi: 10.1021/acsami.8b13932http://dx.doi.org/10.1021/acsami.8b13932
0
浏览量
185
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构