浏览全部资源
扫码关注微信
1.宁波大学高等技术研究院 红外材料与器件实验室, 浙江 宁波 315211
2.浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211
3.浙江省海洋研究院, 浙江 宁波 315211
4.吉林大学 集成光电子学国家重点实验室, 吉林 长春 130012
[ "张敏(1998-),女,山东泰安人,硕士研究生,2021年于山东师范大学获得学士学位,主要从事硫系光纤的制备及性能仿真方面的研究。 E-mail: zhangmin20220205@163.com" ]
[ "王训四(1979-),男,湖南邵阳人,博士,研究员,博士生导师,2007年于中国科学院上海光学精密机械研究所获得博士学位,主要从事红外光学玻璃、红外光纤器件应用基础研究和关键技术的研究。 E-mail: wangxunsi@nbu.edu.cn" ]
纸质出版日期:2023-04-05,
收稿日期:2022-10-18,
修回日期:2022-11-06,
扫 描 看 全 文
张敏,王弦歌,李宁哲等.19芯碲酸盐玻璃放大光纤的低串扰结构设计及性能仿真[J].发光学报,2023,44(04):694-700.
ZHANG Min,WANG Xiange,LI Ningzhe,et al.Low Crosstalk Structure Design and Performance Simulation in 19-core Tellurite Glass Amplification Fiber[J].Chinese Journal of Luminescence,2023,44(04):694-700.
张敏,王弦歌,李宁哲等.19芯碲酸盐玻璃放大光纤的低串扰结构设计及性能仿真[J].发光学报,2023,44(04):694-700. DOI: 10.37188/CJL.20220371.
ZHANG Min,WANG Xiange,LI Ningzhe,et al.Low Crosstalk Structure Design and Performance Simulation in 19-core Tellurite Glass Amplification Fiber[J].Chinese Journal of Luminescence,2023,44(04):694-700. DOI: 10.37188/CJL.20220371.
基于空分复用技术的多芯光纤通信核心指标之一是信道串扰,该问题的存在极大地影响着传输距离及信号质量,尤其是在宽带光纤放大系统中。本文重点讨论了弱耦合19芯光纤的串扰问题,同时提出了一种利于多组分碲酸盐玻璃挤压制备的沟槽辅助型19芯光纤,并采用耦合功率理论和有限元法对模型进行了相关性能的数值仿真,系统研究了沟槽尺寸、折射率分布及相关光纤参数对芯间串扰的影响。仿真结果表明,优化设计后的光纤在1 550 nm处拥有-156 dB/100 m的低串扰值,可以满足大容量光纤通信用宽带光放大器的应用需求。
Channel crosstalk is one important feature of multi-core fiber communication based on space division multiplexing technology, which could affect the signal quality and transmission distance of the broadband fiber amplification system. This paper is focused on the crosstalk problems of a 19-core weak coupling optical fiber, as that can benefit much to develop high-volume communicating fiber based on fiber extrusion technology. Then, the optical coupling theory and finite element method are adopted to complete the numerical simulation of fiber performance, here, key parameters of groove size, core refractive index distribution and their influence on the crosstalk of the fiber are optimized wholly. The simulation results show that the optimized fiber has a low crosstalk of -156 dB/100 m at 1 550 nm, which could meet the requirements of future long-distance high-capacity optical fiber communication.
低串扰19芯光纤沟槽辅助型多组分碲酸盐玻璃
low crosstalk19-core fibertrench assistedmulticomponent tellurite glass
SAKAMOTO T, SAITOH K, SAITOH S, et al. Six-mode seven-core fiber for repeated dense space-division multiplexing transmission [J]. J. Lightwave Technol., 2018, 36(5): 1226-1232. doi: 10.1109/jlt.2018.2797361http://dx.doi.org/10.1109/jlt.2018.2797361
WANG L Y, LI S G, MENG X J, et al. Low cross talk homogeneous seven-core five-LP mode fiber based on a high and low refractive index double ring [J]. J. Opt. Soc. Am. B, 2021, 38(12): 3849-3857. doi: 10.1364/josab.434680http://dx.doi.org/10.1364/josab.434680
XIE Y H, PEI L, ZHENG J J, et al. Impact analysis of a dense hole-assisted structure on crosstalk and bending loss in homogeneous few-mode multi-core fibers [J]. Opt. Express, 2020, 28(16): 23806-23819. doi: 10.1364/oe.400461http://dx.doi.org/10.1364/oe.400461
TU J J, SAITOH K, TAKENAGA K, et al. Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay [J]. Opt. Express, 2014, 22(4): 4329-4341. doi: 10.1364/oe.22.004329http://dx.doi.org/10.1364/oe.22.004329
XIA C, AMEZCUA-CORREA R, BAI N, et al. Hole-assisted few-mode multicore fiber for high-density space-division multiplexing [J]. IEEE Photonics Technol. Lett., 2012, 24(21): 1914-1917. doi: 10.1109/lpt.2012.2218801http://dx.doi.org/10.1109/lpt.2012.2218801
涂佳静, 李朝晖. 空分复用光纤研究综述 [J]. 光学学报, 2021, 41(1): 0106003-1-18. doi: 10.3788/aos202141.0106003http://dx.doi.org/10.3788/aos202141.0106003
TU J J, LI Z H. Review of space division multiplexing fibers [J]. Acta Opt. Sinica, 2021, 41(1): 0106003-1-18. (in Chinese). doi: 10.3788/aos202141.0106003http://dx.doi.org/10.3788/aos202141.0106003
LI Z H, WANG L Y, WANG Y, et al. Manufacturable low-crosstalk high-RCMF 13-core 5-LP mode fiber with graded-index core and stairway-index trench [J]. Opt. Express, 2021, 29(17): 26418-26432. doi: 10.1364/oe.434654http://dx.doi.org/10.1364/oe.434654
SAKAGUCHI J, PUTTNAM B J, KLAUS W, et al. 305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber [J]. J. Lightwave Technol., 2012, 31(4): 554-562. doi: 10.1109/jlt.2012.2217373http://dx.doi.org/10.1109/jlt.2012.2217373
KUMAR D, RANJAN R. Crosstalk suppression using trench-assisted technique in 9-core homogeneous multi core fiber [C]. 2017 14th IEEE India Council International Conference, Roorkee, 2017: 1-4. doi: 10.1109/indicon.2017.8487586http://dx.doi.org/10.1109/indicon.2017.8487586
KUMAR D, RANJAN R. Optimal design for crosstalk analysis in 12-core 5-LP mode homogeneous multicore fiber for different lattice structure [J]. Opt. Fiber Technol., 2018, 41: 95-103. doi: 10.1016/j.yofte.2018.01.002http://dx.doi.org/10.1016/j.yofte.2018.01.002
JAIN S, MIZUNO T, JUNG Y, et al. 32-core inline multicore fiber amplifier for dense space division multiplexed transmissionsystems [C]. Post Deadline Paper; 42nd European Conference on Optical Communication, Dusseldorf, 2016: 1-3. doi: 10.1109/ecoc.2017.8346070http://dx.doi.org/10.1109/ecoc.2017.8346070
PUTTNAM B J, RADEMACHER G, LUÍS R S, et al. High data-rate and long distance MCF transmission with 19-core C+L band cladding-pumped EDFA [J]. J. Lightwave Technol., 2020, 38(1): 123-130. doi: 10.1109/jlt.2019.2946879http://dx.doi.org/10.1109/jlt.2019.2946879
ABEDIN K S, FINI J M, THIERRY T F, et al. Seven-core erbium-doped double-clad fiber amplifier pumped simultaneously by side-coupled multimode fiber [J]. Opt. Lett., 2014, 39(4): 993-996. doi: 10.1364/ol.39.000993http://dx.doi.org/10.1364/ol.39.000993
许晨煜, 崔健, 许彦涛, 等. 用于中红外光纤激光器的高Pr3+掺杂硒化物硫系玻璃和光纤制备及其光谱特性 [J]. 发光学报, 2022, 43(6): 851-861. doi: 10.37188/cjl.20220088http://dx.doi.org/10.37188/cjl.20220088
XU C Y, CUI J, XU Y T, et al. Fabrication and spectroscopic properties of heavily Pr3+ doped selenide chalcogenide glass and fiber for mid-infrared fiber laser [J]. Chin. J. Lumin., 2022, 43(6): 851-861. (in English). doi: 10.37188/cjl.20220088http://dx.doi.org/10.37188/cjl.20220088
HAMIDA B A, CHENG X S, NAJI A W, et al. Optical amplifier with flat-gain and wideband operation utilizing highly concentrated erbium-doped fibers [J]. J. Nonlinear Opt. Phys. Mater., 2012, 21(1): 1250005-1-7. doi: 10.1142/s0218863512500051http://dx.doi.org/10.1142/s0218863512500051
JIA Z X, LI H, MENG X W, et al. Broadband amplification and highly efficient lasing in erbium-doped tellurite microstructured fibers [J]. Opt. Lett., 2013, 38(7): 1049-1051. doi: 10.1364/ol.38.001049http://dx.doi.org/10.1364/ol.38.001049
汪俊, 冯赞, 吴国林, 等. Pr3+掺杂Ge-Ga-Se-CsI硫卤玻璃性能及光纤制备 [J]. 发光学报, 2020, 41(11): 1343-1350. doi: 10.37188/cjl.20200223http://dx.doi.org/10.37188/cjl.20200223
WANG J, FENG Z, WU G L, et al. Pr3+ doped Ge-Ga-Se-CsI chalcohalide glass and fiber preparation [J]. Chin. J. Lumin., 2020, 41(11): 1343-1350. (in Chinese). doi: 10.37188/cjl.20200223http://dx.doi.org/10.37188/cjl.20200223
EBENDORFF-HEIDEPRIEM H, KUAN K, OERMANN M R, et al. Extruded tellurite glass and fibers with low OH content for mid-infrared applications [J]. Opt. Mater. Express, 2012, 2(4): 432-442. doi: 10.1364/ome.2.000432http://dx.doi.org/10.1364/ome.2.000432
EVRARD M, COMBES T, MALDONADO A, et al. TeO2-ZnO-La2O3 tellurite glass purification for mid-infrared optical fibers manufacturing [J]. Opt. Mater. Express, 2022, 12(1): 136-152. doi: 10.1364/ome.438588http://dx.doi.org/10.1364/ome.438588
WANG X G, JIAO K, SI N, et al. Extruded seven-core tellurium chalcogenide fiber for mid-infrared [J]. Opt. Mater. Express, 2019, 9(9): 3863-3870. doi: 10.1364/ome.9.003863http://dx.doi.org/10.1364/ome.9.003863
XIAO J, WANG J J, XU T S, et al. Large mode-area chalcogenide multicore fiber prepared by continuous two-stage extrusion [J]. Opt. Mater. Express, 2021, 11(3): 791-800. doi: 10.1364/ome.417721http://dx.doi.org/10.1364/ome.417721
TU J J, SAITOH K, KOSHIBA M, et al. Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber [J]. Opt. Express, 2012, 20(14): 15157-15170. doi: 10.1364/oe.20.015157http://dx.doi.org/10.1364/oe.20.015157
YE F H, TU J J, SAITOH K, et al. Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers [J]. Opt. Express, 2014, 22(19): 23007-23018. doi: 10.1364/oe.22.023007http://dx.doi.org/10.1364/oe.22.023007
XIE Y H, PEI L, ZHENG J J, et al. Low-DMD and low-crosstalk few-mode multi-core fiber with air-trench/holes assisted graded-index profile [J]. Opt. Commun., 2020, 474: 126155-1-9. doi: 10.1016/j.optcom.2020.126155http://dx.doi.org/10.1016/j.optcom.2020.126155
KANESHIMA K, NAMIHIRA Y, ZOU N Y, et al. Numerical investigation of octagonal photonic crystal fibers with strong confinement field [J]. IEICE Trans. Electron., 2006, E89-C(6): 830-837. doi: 10.1093/ietele/e89-c.6.830http://dx.doi.org/10.1093/ietele/e89-c.6.830
0
浏览量
136
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构