浏览全部资源
扫码关注微信
南开大学 化学学院, 高分子化学研究所, 天津 300071
[ "高玉平(1995-),男,河南信阳人,博士研究生,2021年于中国科学技术大学获得硕士学位,主要从事钙钛矿太阳能电池的研究。E-mail: ypgao@nankai. mail. edu. cn" ]
[ "刘永胜 (1978-),男,山西怀仁人,博士,教授,博士生导师,2009年于南开大学获得博士学位,主要从事有机及有机/无机杂化半导体材料和光伏器件的研究。 E-mail: liuys@nankai.edu.cn。" ]
纸质出版日期:2023-03-05,
收稿日期:2022-09-30,
修回日期:2022-10-19,
扫 描 看 全 文
高玉平,王瑞,刘永胜.基于芳香族配体的二维钙钛矿太阳能电池研究进展[J].发光学报,2023,44(03):449-465.
GAO Yuping,WANG Rui,LIU Yongsheng.Progress of Two-dimensional Perovskite Solar Cells Based on Aromatic Organic Spacers[J].Chinese Journal of Luminescence,2023,44(03):449-465.
高玉平,王瑞,刘永胜.基于芳香族配体的二维钙钛矿太阳能电池研究进展[J].发光学报,2023,44(03):449-465. DOI: 10.37188/CJL.20220359.
GAO Yuping,WANG Rui,LIU Yongsheng.Progress of Two-dimensional Perovskite Solar Cells Based on Aromatic Organic Spacers[J].Chinese Journal of Luminescence,2023,44(03):449-465. DOI: 10.37188/CJL.20220359.
近年来,钙钛矿太阳能电池(PSCs)的效率得到了快速的发展,目前已经获得25.7%的认证效率,可与硅基太阳能电池相媲美。然而,PSCs的稳定性却远不如硅基太阳能电池,这限制了PSCs的使用。与此同时,二维(2D)或准二维钙钛矿材料受到了越来越多的关注,主要是因为大体积有机配体的引入明显地改善了材料的结构和环境稳定性。在2D PSCs领域,有机配体离子的设计和选择会直接影响材料的光电性能和器件的效率。目前,2D PSCs中所使用的有机配体主要分为脂肪族配体和芳香族配体。芳香族配体由于具有较大的介电常数、改善的电荷传输和可调控的组装结构等优点得到越来越多的关注。本文系统地总结了芳香族配体材料对2D钙钛矿性能的影响及其在2D PSCs领域的应用。
Perovskite solar cells(PSCs) have undergone unprecedented rapid development in the past decade. A certified power conversion efficiency (PCE) of 25.7% has been achieved, which is comparable to that of commercialized silicon solar cells. However, the inferior stability under heat and moisture has hindered their commercial application. Two-dimensional (2D) or quasi-2D perovskite materials have attracted considerable interest due to their superior structural and environmental stability in comparison with their 3D counterpart. The organic spacers play a very important role in 2D perovskites and they could directly affect the optoelectronic properties of the materials and the PCE of the devices. The organic spacers for 2D PSCs mainly include aliphatic spacers and aromatic spacers. The aromatic spacers have received more and more attention because of their large dielectric constants, superior charge transport properties and tunable self-assembly structures. In this review, we systematically summarize the effects of aromatic spacers on the structural and optoelectronic properties of 2D perovskite materials, and their applications in 2D PSCs.
二维钙钛矿太阳能电池稳定性电荷传输
two-dimensional perovskitesolar cellstabilitycharge transport
XING G C, MATHEWS N, SUN S Y, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3 [J]. Science, 2013, 342(6156): 344-347. doi: 10.1126/science.1243167http://dx.doi.org/10.1126/science.1243167
DONG Q F, FANG Y J, SHAO Y C, et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals [J]. Science, 2015, 347(6225): 967-970. doi: 10.1126/science.aaa5760http://dx.doi.org/10.1126/science.aaa5760
ARORA N, DAR M I, HINDERHOFER A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20 [J]. Science, 2017, 358(6364): 768-771. doi: 10.1126/science.aam5655http://dx.doi.org/10.1126/science.aam5655
YANG W S, PARK B W, JUNG E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells [J]. Science, 2017, 356(6345): 1376-1379. doi: 10.1126/science.aan2301http://dx.doi.org/10.1126/science.aan2301
CAO Y, WANG N N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures [J]. Nature, 2018, 562(7726): 249-253. doi: 10.1038/s41586-018-0576-2http://dx.doi.org/10.1038/s41586-018-0576-2
LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per⁃cent [J]. Nature, 2018, 562(7726): 245-248. doi: 10.1038/s41586-018-0575-3http://dx.doi.org/10.1038/s41586-018-0575-3
叶子青, 张灯亮, 段兴兴, 等. 基于氟代苯乙胺有机阳离子的准二维钙钛矿发光二极管 [J]. 发光学报, 2022, 43(8): 1244-1255. doi: 10.37188/CJL.20220194http://dx.doi.org/10.37188/CJL.20220194
YE Z Q, ZHANG D L, DUAN X X, et al. Quasi-2D perovskite light-emitting diodes with fluorophenethylammonium as organic cations [J]. Chin. J. Lumin., 2022, 43(8): 1244-1255. (in Chinese). doi: 10.37188/CJL.20220194http://dx.doi.org/10.37188/CJL.20220194
SENANAYAK S P, YANG B Y, THOMAS T H, et al. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors [J]. Sci. Adv., 2017, 3(1): e1601935-1-10. doi: 10.1126/sciadv.1601935http://dx.doi.org/10.1126/sciadv.1601935
王兰, 董渊, 高嵩, 等. 钙钛矿材料在激光领域的研究进展 [J]. 中国光学, 2019, 12(5): 993-1014. doi: 10.3788/co.20191205.0993http://dx.doi.org/10.3788/co.20191205.0993
WANG L, DONG Y, GAO S, et al. Research progress of perovskite materials in the field of lasers [J]. Chin. Opt., 2019, 12(5): 993-1014. (in Chinese). doi: 10.3788/co.20191205.0993http://dx.doi.org/10.3788/co.20191205.0993
WEI H T, FANG Y J, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals [J]. Nat. Photonics, 2016, 10(5): 333-339. doi: 10.1038/nphoton.2016.41http://dx.doi.org/10.1038/nphoton.2016.41
FANG Y J, DONG Q F, SHAO Y C, et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination [J]. Nat. Photonics, 2015, 9(10): 679-686. doi: 10.1038/nphoton.2015.156http://dx.doi.org/10.1038/nphoton.2015.156
杨洁, 皮明雨, 张丁可, 等. 低维钙钛矿光电探测器研究进展 [J]. 发光学报, 2021, 42(6): 755-773. doi: 10.37188/CJL.20210033http://dx.doi.org/10.37188/CJL.20210033
YANG J, PI M Y, ZHANG D K, et al. Recent progress on low-dimensional perovskite photodetectors [J]. Chin. J. Lumin., 2021, 42(6): 755-773. (in Chinese). doi: 10.37188/CJL.20210033http://dx.doi.org/10.37188/CJL.20210033
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. doi: 10.1021/ja809598rhttp://dx.doi.org/10.1021/ja809598r
MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes [J]. Nature, 2021, 598(7881): 444-450. doi: 10.1038/s41586-021-03964-8http://dx.doi.org/10.1038/s41586-021-03964-8
TAN S, HUANG T Y, YAVUZ I, et al. Stability-limiting heterointerfaces of perovskite photovoltaics [J]. Nature, 2022, 605(7909): 268-273. doi: 10.1038/s41586-022-04604-5http://dx.doi.org/10.1038/s41586-022-04604-5
JIANG Q, ZHAO Y, ZHANG X W, et al. Surface passivation of perovskite film for efficient solar cells [J]. Nat. Photonics, 2019, 13(7): 460-466. doi: 10.1038/s41566-019-0398-2http://dx.doi.org/10.1038/s41566-019-0398-2
ZHANG F, PARK S Y, YAO C L, et al. Metastable dion-jacobson 2D structure enables efficient and stable perovskite solar cells [J]. Science, 2021, 375(6576): 71-76. doi: 10.1126/science.abj2637http://dx.doi.org/10.1126/science.abj2637
SUO J J, YANG B W, JEONG J, et al. Interfacial engineering from material to solvent: a mechanistic understanding on stabilizing α-formamidinium lead triiodide perovskite photovoltaics [J]. Nano Energy, 2022, 94: 106924-1-7. doi: 10.1016/j.nanoen.2022.106924http://dx.doi.org/10.1016/j.nanoen.2022.106924
WU G B, LIANG R, GE M Z, et al. Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells [J]. Adv. Mater., 2022, 34(8): 2105635. doi: 10.1002/adma.202105635http://dx.doi.org/10.1002/adma.202105635
XIONG Z, CHEN X, ZHANG B, et al. Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4% [J]. Adv. Mater., 2022, 34(8): 2106118. doi: 10.1002/adma.202106118http://dx.doi.org/10.1002/adma.202106118
ZHENG X P, CHEN B, DAI J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations [J]. Nat. Energy, 2017, 2(7): 17102-1-9. doi: 10.1038/nenergy.2017.102http://dx.doi.org/10.1038/nenergy.2017.102
WANG R, XUE J J, WANG K L, et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics [J]. Science, 2019, 366(6472): 1509-1513. doi: 10.1126/science.aay9698http://dx.doi.org/10.1126/science.aay9698
ZHOU T, XU Z Y, WANG R, et al. Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability [J]. Adv. Mater., 2022, 34(17): 2200705-1-10. doi: 10.1002/adma.202200705http://dx.doi.org/10.1002/adma.202200705
LUO C, ZHENG G H J, GAO F, et al. Facet orientation tailoring via 2D-seed-induced growth enables highly efficient and stable perovskite solar cells [J]. Joule, 2022, 6(1): 240-257. doi: 10.1016/j.joule.2021.12.006http://dx.doi.org/10.1016/j.joule.2021.12.006
SWARNKAR A, MARSHALL A R, SANEHIRA E M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics [J]. Science, 2016, 354(6308): 92-95. doi: 10.1126/science.aag2700http://dx.doi.org/10.1126/science.aag2700
XIANG W C, WANG Z W, KUBICKI D J, et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells [J]. Joule, 2019, 3(1): 205-214. doi: 10.1016/j.joule.2018.10.008http://dx.doi.org/10.1016/j.joule.2018.10.008
SHI L, BUCKNALL M P, YOUNG T L, et al. Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells [J]. Science, 2020, 368(6497): eaba2412-1-7. doi: 10.1126/science.aba2412http://dx.doi.org/10.1126/science.aba2412
TSAI H, NIE W Y, BLANCON J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells [J]. Nature, 2016, 536(7616): 312-316. doi: 10.1038/nature18306http://dx.doi.org/10.1038/nature18306
REN H, YU S D, CHAO L F, et al. Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction [J]. Nat. Photonics, 2020, 14(3): 154-163. doi: 10.1038/s41566-019-0572-6http://dx.doi.org/10.1038/s41566-019-0572-6
AHMAD S, FU P, YU S W, et al. Dion-jacobson phase 2D layered perovskites for solar cells with ultrahigh stability [J]. Joule, 2019, 3(3): 794-806. doi: 10.1016/j.joule.2018.11.026http://dx.doi.org/10.1016/j.joule.2018.11.026
ZHANG Y L, PARK N G. Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22% [J]. ACS Energy Lett., 2022, 7(2): 757-765. doi: 10.1021/acsenergylett.1c02645http://dx.doi.org/10.1021/acsenergylett.1c02645
STRAUS D B, KAGAN C R. Electrons, excitons, and phonons in two-dimensional hybrid perovskites: connecting structural, optical, and electronic properties [J]. J. Phys. Chem. Lett., 2018, 9(6): 1434-1447. doi: 10.1021/acs.jpclett.8b00201http://dx.doi.org/10.1021/acs.jpclett.8b00201
GAO Y, SHI E Z, DENG S B, et al. Molecular engineering of organic-inorganic hybrid perovskites quantum wells [J]. Nat. Chem., 2019, 11(12): 1151-1157. doi: 10.1038/s41557-019-0354-2http://dx.doi.org/10.1038/s41557-019-0354-2
PROPPE A H, QUINTERO-BERMUDEZ R, TAN H R, et al. Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics [J]. J. Am. Chem. Soc., 2018, 140(8): 2890-2896. doi: 10.1021/jacs.7b12551http://dx.doi.org/10.1021/jacs.7b12551
LIANG J H, ZHANG Z F, XUE Q, et al. A finely regulated quantum well structure in quasi-2D ruddlesden-popper perovskite solar cells with efficiency exceeding 20% [J]. Energy Environ. Sci., 2022, 15(1): 296-310. doi: 10.1039/d1ee01695dhttp://dx.doi.org/10.1039/d1ee01695d
KAMMINGA M E, FANG H H, FILIP M R, et al. Confinement effects in low-dimensional lead iodide perovskite hybrids [J]. Chem. Mater., 2016, 28(13): 4554-4562. doi: 10.1021/acs.chemmater.6b00809http://dx.doi.org/10.1021/acs.chemmater.6b00809
ZHAO R Y, SABATINI R P, ZHU T, et al. Rigid conjugated diamine templates for stable Dion-Jacobson-Type two-dimensional perovskites [J]. J. Am. Chem. Soc., 2021, 143(47): 19901-19908. doi: 10.1021/jacs.1c09515http://dx.doi.org/10.1021/jacs.1c09515
PASSARELLI J V, FAIRFIELD D J, SATHER N A, et al. Enhanced out-of-plane conductivity and photovoltaic performance in n = 1 layered perovskites through organic cation design [J]. J. Am. Chem. Soc., 2018, 140(23): 7313-7323. doi: 10.1021/jacs.8b03659http://dx.doi.org/10.1021/jacs.8b03659
LAO Y N, YANG S, YU W J, et al. Multifunctional π-conjugated additives for halide perovskite [J]. Adv. Sci., 2022, 9(17): 2105307-1-22. doi: 10.1002/advs.202105307http://dx.doi.org/10.1002/advs.202105307
HU J, OSWALD I W H, STUARD S J, et al. Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites [J]. Nat. Commun., 2019, 10(1): 1276-1-11. doi: 10.1038/s41467-019-08980-xhttp://dx.doi.org/10.1038/s41467-019-08980-x
LI X T, HOFFMAN J M, KANATZIDIS M G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency [J]. Chem. Rev., 2021, 121(4): 2230-2291. doi: 10.1021/acs.chemrev.0c01006http://dx.doi.org/10.1021/acs.chemrev.0c01006
SAPAROV B, MITZI D B. Organic-inorganic perovskites: structural versatility for functional materials design [J]. Chem. Rev., 2016, 116(7): 4558-4596. doi: 10.1021/acs.chemrev.5b00715http://dx.doi.org/10.1021/acs.chemrev.5b00715
STOUMPOS C C, CAO D H, CLARK D J, et al. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors [J]. Chem. Mater., 2016, 28(8): 2852-2867. doi: 10.1021/acs.chemmater.6b00847http://dx.doi.org/10.1021/acs.chemmater.6b00847
MAO L L, KE W J, PEDESSEAU L, et al. Hybrid Dion-Jacobson 2D lead iodide perovskites [J]. J. Am. Chem. Soc., 2018, 140(10): 3775-3783. doi: 10.1021/jacs.8b00542http://dx.doi.org/10.1021/jacs.8b00542
GONG J, HAO M W, ZHANG Y L, et al. Layered 2D halide perovskites beyond the Ruddlesden-Popper phase: tailored interlayer chemistries for high-performance solar cells [J]. Angew. Chem. Int. Ed., 2022, 61(10): e202112022-1-13. doi: 10.1002/anie.202112022http://dx.doi.org/10.1002/anie.202112022
ZHANG Y L, WANG P J, TANG M C, et al. Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics [J]. J. Am. Chem. Soc., 2019, 141(6): 2684-2694. doi: 10.1021/jacs.8b13104http://dx.doi.org/10.1021/jacs.8b13104
WU G B, LI X, ZHOU J Y, et al. Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing [J]. Adv. Mater., 2019, 31(42): 1903889-1-11. doi: 10.1002/adma.201903889http://dx.doi.org/10.1002/adma.201903889
WEI Y, CHU H L, TIAN Y Y, et al. Reverse-Graded 2D Ruddlesden-Popper perovskites for efficient air-stable solar cells [J]. Adv. Energy Mater., 2019, 9(21): 1900612-1-9. doi: 10.1002/aenm.201900612http://dx.doi.org/10.1002/aenm.201900612
PARK N G. Perovskite solar cells: an emerging photovoltaic technology [J]. Mater. Today, 2015, 18(2): 65-72. doi: 10.1016/j.mattod.2014.07.007http://dx.doi.org/10.1016/j.mattod.2014.07.007
ORTIZ-CERVANTES C, CARMONA-MONROY P, SOLIS-IBARRA D. Two-dimensional halide perovskites in solar cells: 2D or not 2D? [J]. ChemSusChem, 2019, 12(8): 1560-1575. doi: 10.1002/cssc.201802992http://dx.doi.org/10.1002/cssc.201802992
RODRÍGUEZ-ROMERO J, HAMES B C, MORA-SERÓ I, et al. Conjugated organic cations to improve the optoelectronic properties of 2D/3D perovskites [J]. ACS Energy Lett., 2017, 2(9): 1969-1970. doi: 10.1021/acsenergylett.7b00654http://dx.doi.org/10.1021/acsenergylett.7b00654
XI J, SPANOPOULOS I, BANG K, et al. Alternative organic spacers for more efficient perovskite solar cells containing Ruddlesden-Popper phases [J]. J. Am. Chem. Soc., 2020, 142(46): 19705-19714. doi: 10.1021/jacs.0c09647http://dx.doi.org/10.1021/jacs.0c09647
RAN C X, GAO W Y, LI J R, et al. Conjugated organic cations enable efficient self-healing FASnI3 solar cells [J]. Joule, 2019, 3(12): 3072-3087. doi: 10.1016/j.joule.2019.08.023http://dx.doi.org/10.1016/j.joule.2019.08.023
PAN H, ZHAO X J, GONG X, et al. Atomic-scale tailoring of organic cation of layered Ruddlesden-Popper perovskite compounds [J]. J. Phys. Chem. Lett., 2019, 10(8): 1813-1819. doi: 10.1021/acs.jpclett.9b00479http://dx.doi.org/10.1021/acs.jpclett.9b00479
FU W F, LIU H B, SHI X L, et al. Tailoring the functionality of organic spacer cations for efficient and stable quasi-2D perovskite solar cells [J]. Adv. Funct. Mater., 2019, 29(25): 1900221-1-8. doi: 10.1002/adfm.201900221http://dx.doi.org/10.1002/adfm.201900221
ZHANG F, KIM D H, LU H P, et al. Enhanced charge transport in 2D perovskites via fluorination of organic cation [J]. J. Am. Chem. Soc., 2019, 141(14): 5972-5979. doi: 10.1021/jacs.9b00972http://dx.doi.org/10.1021/jacs.9b00972
SAHAYARAJ S, RADICCHI E, ZIÓŁEK M, et al. Combination of a large cation and coordinating additive improves carrier transport properties in quasi-2D perovskite solar cells [J]. J. Mater. Chem. A, 2021, 9(14): 9175-9190. doi: 10.1039/d0ta12431ahttp://dx.doi.org/10.1039/d0ta12431a
SHAO M, BIE T, YANG L P, et al. Over 21% efficiency stable 2D perovskite solar cells [J]. Adv. Mater., 2022, 34(1): 2107211-1-10. doi: 10.1002/adma.202107211http://dx.doi.org/10.1002/adma.202107211
YANG R, LI R Z, CAO Y, et al. Oriented quasi-2D perovskites for high performance optoelectronic devices [J]. Adv. Mater., 2018, 30(51): 180477-1-8. doi: 10.1002/adma.201804771http://dx.doi.org/10.1002/adma.201804771
LI Q H, DONG Y X, LV G W, et al. Fluorinated aromatic formamidinium spacers boost efficiency of layered Ruddlesden-Popper perovskite solar cells [J]. ACS Energy Lett., 2021, 6(6): 2072-2080. doi: 10.1021/acsenergylett.1c00620http://dx.doi.org/10.1021/acsenergylett.1c00620
HU J, OSWALD I W H, HU H M, et al. Aryl-perfluoroaryl interaction in two-dimensional organic-inorganic hybrid perovskites boosts stability and photovoltaic efficiency [J]. ACS Materials Lett., 2019, 1(1): 171-176. doi: 10.1021/acsmaterialslett.9b00102http://dx.doi.org/10.1021/acsmaterialslett.9b00102
FANG Z, HOU X M, ZHENG Y P, et al. First-principles optimization of out-of-plane charge transport in Dion-Jacobson CsPbI3 perovskites with π-conjugated aromatic spacers [J]. Adv. Funct. Mater., 2021, 31(28): 2102330-1-8. doi: 10.1002/adfm.202102330http://dx.doi.org/10.1002/adfm.202102330
COHEN B E, LI Y M, MENG Q B, et al. Dion-Jacobson two-dimensional perovskite solar cells based on benzene dimethanammonium cation [J]. Nano Lett., 2019, 19(4): 2588-2597. doi: 10.1021/acs.nanolett.9b00387http://dx.doi.org/10.1021/acs.nanolett.9b00387
LI Y, MILIC J V, UMMADISINGU A, et al. Bifunctional organic spacers for formamidinium-based hybrid Dion-Jacobson two-dimensional perovskite solar cells [J]. Nano Lett., 2019, 19(1): 150-157. doi: 10.1021/acs.nanolett.8b03552http://dx.doi.org/10.1021/acs.nanolett.8b03552
WANG D, CHEN S C, ZHENG Q D. Enhancing the efficiency and stability of two-dimensional Dion-Jacobson perovskite solar cells using a fluorinated diammonium spacer [J]. J. Mater. Chem. A, 2021, 9(19): 11778-11786. doi: 10.1039/d1ta01447ahttp://dx.doi.org/10.1039/d1ta01447a
LV G W, LI L, LU D, et al. Multiple-noncovalent-interaction-stabilized layered Dion-Jacobson perovskite for efficient solar cells [J]. Nano Lett., 2021, 21(13): 5788-5797. doi: 10.1021/acs.nanolett.1c01505http://dx.doi.org/10.1021/acs.nanolett.1c01505
YU H Y, XIE Y L, ZHANG J, et al. Thermal and humidity stability of mixed spacer cations 2D perovskite solar cells [J]. Adv. Sci., 2021, 8(12): 2004510-1-10. doi: 10.1002/advs.202004510http://dx.doi.org/10.1002/advs.202004510
LAI H T, KAN B, LIU T T, et al. Two-dimensional Ruddlesden-Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15% [J]. J. Am. Chem. Soc., 2018, 140(37): 11639-11646. doi: 10.1021/jacs.8b04604http://dx.doi.org/10.1021/jacs.8b04604
LAI H T, LU D, XU Z Y, et al. Organic-salt-assisted crystal growth and orientation of quasi-2D Ruddlesden-Popper perovskites for solar cells with efficiency over 19% [J]. Adv. Mater., 2020, 32(33): 2001470-1-10. doi: 10.1002/adma.202001470http://dx.doi.org/10.1002/adma.202001470
NI C Y, HUANG Y H, ZENG T, et al. Thiophene cation intercalation to improve band-edge integrity in reduced-dimensional perovskites [J]. Angew. Chem. Int. Ed., 2020, 59(33): 13977-13983. doi: 10.1002/anie.202006112http://dx.doi.org/10.1002/anie.202006112
DONG Y X, LU D, XU Z Y, et al. 2-Thiopheneformamidinium-based 2D Ruddlesden-Popper perovskite solar cells with efficiency of 16.72% and negligible hysteresis [J]. Adv. Energy Mater., 2020, 10(28): 2000694-1-9. doi: 10.1002/aenm.202000694http://dx.doi.org/10.1002/aenm.202000694
XU Z Y, LI L, DONG X Y, et al. CsPbI3-based phase-stable 2D Ruddlesden-Popper perovskites for efficient solar cells [J]. Nano Lett., 2022, 22(7): 2874-2880. doi: 10.1021/acs.nanolett.2c00002http://dx.doi.org/10.1021/acs.nanolett.2c00002
COFFEY A H, YANG S J, GÓMEZ M, et al. Controlling crystallization of quasi-2D perovskite solar cells: incorporating bulky conjugated ligands [J]. Adv. Energy Mater., 2022, 2201501. https://onlinelibrary.wiley.com/doi/10.1002/aenm.202201501https://onlinelibrary.wiley.com/doi/10.1002/aenm.202201501. doi: 10.1002/aenm.202201501http://dx.doi.org/10.1002/aenm.202201501
YAN Y J, YU S, HONARFAR A, et al. Benefiting from spontaneously generated 2D/3D bulk-heterojunctions in Ruddlesden-Popper perovskite by incorporation of S-bearing spacer cation [J]. Adv. Sci., 2019, 6(14): 1900548-1-9. doi: 10.1002/advs.201900548http://dx.doi.org/10.1002/advs.201900548
QIN Y, ZHONG H J, INTEMANN J J, et al. Coordination engineering of single-crystal precursor for phase control in Ruddlesden-Popper perovskite solar cells [J]. Adv. Energy Mater., 2020, 10(16): 1904050-1-11. doi: 10.1002/aenm.201904050http://dx.doi.org/10.1002/aenm.201904050
XU Z Y, LU D, DONG X Y, et al. Highly efficient and stable Dion-Jacobson perovskite solar cells enabled by extended π-conjugation of organic spacer [J]. Adv. Mater., 2021, 33(51): 2105083-1-12. doi: 10.1002/adma.202105083http://dx.doi.org/10.1002/adma.202105083
LU D, LV G W, XU Z Y, et al. Thiophene-based two-dimensional Dion-Jacobson perovskite solar cells with over 15% efficiency [J]. J. Am. Chem. Soc., 2020, 142(25): 11114-11122. doi: 10.1021/jacs.0c03363http://dx.doi.org/10.1021/jacs.0c03363
LI Y R, CHENG H L, ZHAO K, et al. 4-(Aminoethyl)pyridine as a bifunctional spacer cation for efficient and stable 2D Ruddlesden-Popper perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2019, 11(41): 37804-37811. doi: 10.1021/acsami.9b13951http://dx.doi.org/10.1021/acsami.9b13951
ZHENG Y, CHEN S C, MA Y L, et al. Furfurylammonium as a spacer for efficient 2D Ruddlesden-Popper perovskite solar cells [J]. Sol. RRL, 2022, 6(8): 2200221-1-7. doi: 10.1002/solr.202200221http://dx.doi.org/10.1002/solr.202200221
WANG R, DONG X Y, LING Q, et al. Spacer engineering for 2D Ruddlesden-Popper perovskites with an ultralong carrier lifetime of over 18 μs enable efficient solar cells [J]. ACS Energy Lett., 2022, 7(10): 3656-3665. doi: 10.1021/acsenergylett.2c01800http://dx.doi.org/10.1021/acsenergylett.2c01800
FEBRIANSYAH B, KOH T M, LEKINA Y, et al. Improved photovoltaic efficiency and amplified photocurrent generation in mesoporous n = 1 two-dimensional lead-iodide perovskite solar cells [J]. Chem. Mater., 2019, 31(3): 890-898. doi: 10.1021/acs.chemmater.8b04064http://dx.doi.org/10.1021/acs.chemmater.8b04064
KE W J, MAO L L, STOUMPOS C C, et al. Compositional and solvent engineering in Dion-Jacobson 2D perovskites boosts solar cell efficiency and stability [J]. Adv. Energy Mater., 2019, 9(10): 1803384-1-11. doi: 10.1002/aenm.201803384http://dx.doi.org/10.1002/aenm.201803384
LI X T, KE W J, TRAORÉ B, et al. Two-dimensional Dion-Jacobson hybrid lead iodide perovskites with aromatic diammonium cations [J]. J. Am. Chem. Soc., 2019, 141(32): 12880-12890. doi: 10.1021/jacs.9b06398http://dx.doi.org/10.1021/jacs.9b06398
XU Z Y, LU D, LIU F, et al. Phase distribution and carrier dynamics in multiple-ring aromatic spacer-based two-dimensional Ruddlesden-Popper perovskite solar cells [J]. ACS Nano, 2020, 14(4): 4871-4881. doi: 10.1021/acsnano.0c00875http://dx.doi.org/10.1021/acsnano.0c00875
0
浏览量
307
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构