浏览全部资源
扫码关注微信
陕西师范大学 材料科学与工程学院, 教育部应用表面与胶体化学重点实验室, 陕西省新能源器件重点实验室, 陕西省新能源技术工程实验室, 新能源材料研究所, 陕西 西安 710119
[ "马闯(1989-),男,河南洛阳人,博士,2022年于陕西师范大学获得博士学位,主要从事低维钙钛矿单晶合成以及X射线探测器应用的研究。" ]
[ "赵奎(1983-),男,四川南充人,博士,教授,博士生导师,2009年于中国科学院获得博士学位,主要从事能源材料,包括基于有机和钙钛矿的光伏和电子器件的研究。" ]
纸质出版日期:2023-03-05,
收稿日期:2022-09-29,
修回日期:2022-10-26,
移动端阅览
马闯,赵奎.钙钛矿单晶X射线探测器:未来可穿戴电子器件的B位工程[J].发光学报,2023,44(03):486-495.
MA Chuang,ZHAO Kui.Perovskite Single-crystal X-ray Detectors: B-site Engineering for Future Wearable Electronics[J].Chinese Journal of Luminescence,2023,44(03):486-495.
马闯,赵奎.钙钛矿单晶X射线探测器:未来可穿戴电子器件的B位工程[J].发光学报,2023,44(03):486-495. DOI: 10.37188/CJL.20220358.
MA Chuang,ZHAO Kui.Perovskite Single-crystal X-ray Detectors: B-site Engineering for Future Wearable Electronics[J].Chinese Journal of Luminescence,2023,44(03):486-495. DOI: 10.37188/CJL.20220358.
卤化铅基钙钛矿单晶(SC)X射线探测器由于其强大的阻挡能力和高载流子传输效率而受到广泛关注。然而,铅基钙钛矿在可穿戴电子产品中的应用受到其毒性的限制。
ABX
3
杂化钙钛矿具有多种结构,通过
B
位点工程将光电子特性和环境友好处理相结合。在这篇展望中,我们总结了钙钛矿SC X射线探测器的最新进展,提供了从铅基到无铅再到无金属的
B
位工程概述。随后,提出了未来钙钛矿可穿戴电子器件的前景。我们希望这篇展望将为结构设计提供有益的指导,以实现高效、环保的钙钛矿可穿戴电子器件。
Lead-halide perovskite single-crystal (SC) X-ray detectors have received considerable attentions due to their strong stopping power and high carrier transport efficiency. However, the application of lead-halide perovskite for wearable electronics is inhibited by their toxicity.
ABX
3
hybrid perovskites have versatile structures, which enable the combination of optoelectronic properties and environmentally friendly processing through
B
-site engineering. In this perspective, we summarize the state of the art in perovskite SC X-ray detectors, providing an overview of
B
-site engineering from lead-based to lead-free and then metal-free. Later, perspective for future perovskite wearable electronics are proposed. We hope that this perspective will provide a helpful guide for structure design towards highly efficient and eco-friendly perovskite wearable electronics.
卤化钙钛矿单晶X射线探测器B位工程可穿戴电子器件
halide perovskite single-crystalX-ray detectorB-site engineeringwearable electronics
PENG J L, XU Y L, YAO F, et al. Thick-junction perovskite X-ray detectors: processing and optoelectronic considerations [J]. Nanoscale, 2022, 14(27): 9636-9647. doi: 10.1039/d2nr01643ehttp://dx.doi.org/10.1039/d2nr01643e
孙锡娟, 夏梦玲, 许银生, 等. 钙钛矿直接型X射线探测成像研究进展 [J]. 发光学报, 2022, 43(7): 1014-1026. doi: 10.37188/cjl.20220119http://dx.doi.org/10.37188/cjl.20220119
SUN X J, XIA M L, XU Y S, et al. Research progress of perovskite direct X-ray imaging [J]. Chin. J. Lumin., 2022, 43(7): 1014-1026. (in Chinese). doi: 10.37188/cjl.20220119http://dx.doi.org/10.37188/cjl.20220119
PAN Z W, WU L, JIANG J Z, et al. Searching for high-quality halide perovskite single crystals toward X-ray detection [J]. J. Phys. Chem. Lett., 2022, 13(13): 2851-2861. doi: 10.1021/acs.jpclett.2c00450http://dx.doi.org/10.1021/acs.jpclett.2c00450
SU Y R, MA W B, YANG Y. Perovskite semiconductors for direct X-ray detection and imaging [J]. J. Semicond., 2020, 41(5): 051204-1-10. doi: 10.1088/1674-4926/41/5/051204http://dx.doi.org/10.1088/1674-4926/41/5/051204
CHO Y, JUNG H R, JO W. Halide perovskite single crystals: growth, characterization, and stability for optoelectronic applications [J]. Nanoscale, 2022, 14(26): 9248-9277. doi: 10.1039/d2nr00513ahttp://dx.doi.org/10.1039/d2nr00513a
DONG Q F, FANG Y J, SHAO Y C, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals [J]. Science, 2015, 347(6225): 967-970. doi: 10.1126/science.aaa5760http://dx.doi.org/10.1126/science.aaa5760
LIU Y, ZHENG X P, FANG Y J, et al. Ligand assisted growth of perovskite single crystals with low defect density [J]. Nat. Commun., 2021, 12(1): 1686-1-8. doi: 10.1038/s41467-021-21934-6http://dx.doi.org/10.1038/s41467-021-21934-6
KAKAVELAKIS G, GEDDA M, PANAGIOTOPOULOS A, et al. Metal halide perovskites for high-energy radiation detection [J]. Adv. Sci., 2020, 7(22): 2002098-1-33. doi: 10.1002/advs.202002098http://dx.doi.org/10.1002/advs.202002098
ZHOU Y, CHEN J, BAKR O M, et al. Metal halide perovskites for X-ray imaging scintillators and detectors [J]. ACS Energy Lett., 2021, 6(2): 739-768. doi: 10.1021/acsenergylett.0c02430http://dx.doi.org/10.1021/acsenergylett.0c02430
WANG J T, WANG S Z, ZHOU Y H, et al. Flexible perovskite light-emitting diodes: progress, challenges and perspective [J]. Sci. China Mater., 2023, 66: 1-21. doi: 10.1007/s40843-022-2197-4http://dx.doi.org/10.1007/s40843-022-2197-4
ZHAO J J, ZHAO L, DENG Y H, et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays [J]. Nat. Photonics, 2020, 14(10): 612-617. doi: 10.1038/s41566-020-0678-xhttp://dx.doi.org/10.1038/s41566-020-0678-x
BAO Z N, CHEN X D. Flexible and stretchable devices [J]. Adv. Mater., 2016, 28(22): 4177-4179. doi: 10.1002/adma.201601422http://dx.doi.org/10.1002/adma.201601422
CHENG Y M, WANG K, XU H, et al. Recent developments in sensors for wearable device applications [J]. Anal. Bioanal. Chem., 2021, 413(24): 6037-6057. doi: 10.1007/s00216-021-03602-2http://dx.doi.org/10.1007/s00216-021-03602-2
CIAVATTI A, SORRENTINO R, BASIRICÒ L, et al. High-sensitivity flexible X-ray detectors based on printed perovskite inks [J]. Adv. Funct. Mater., 2021, 31(11): 2009072-1-9. doi: 10.1002/adfm.202009072http://dx.doi.org/10.1002/adfm.202009072
DEMCHYSHYN S, VERDI M, BASIRICÒ L, et al. Designing ultraflexible perovskite X-ray detectors through interface engineering [J]. Adv. Sci., 2020, 7(24): 2002586-1-11. doi: 10.1002/advs.202002586http://dx.doi.org/10.1002/advs.202002586
SUN R J, WANG Z F, WANG H Q, et al. Micrometer-resolution X-ray imaging enabled by a flexible perovskite screen [J]. ACS Appl. Mater. Interfaces, 2022, 14(32): 36801-36806. doi: 10.1021/acsami.2c08238http://dx.doi.org/10.1021/acsami.2c08238
STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection [J]. Cryst. Growth. Des., 2013, 13(7): 2722-2727. doi: 10.1021/cg400645thttp://dx.doi.org/10.1021/cg400645t
WEI H T, FANG Y J, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals [J]. Nat. Photonics, 2016, 10(5): 333-339. doi: 10.1038/nphoton.2016.41http://dx.doi.org/10.1038/nphoton.2016.41
SONG J M, FENG X P, LI H Y, et al. Facile strategy for facet competition management to improve the performance of perovskite single-crystal X-ray detectors [J]. J. Phys. Chem. Lett., 2020, 11(9): 3529-3535. doi: 10.1021/acs.jpclett.0c00770http://dx.doi.org/10.1021/acs.jpclett.0c00770
SONG Y L, LI L Q, BI W H, et al. Atomistic surface passivation of CH3NH3PbI3 perovskite single crystals for highly sensitive coplanar-structure X-ray detectors [J]. Research, 2020, 2020: 5958243-1-10. doi: 10.34133/2020/5958243http://dx.doi.org/10.34133/2020/5958243
HUANG Y M, QIAO L, JIANG Y Z, et al. A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector [J]. Angew. Chem. Int. Ed., 2019, 58(49): 17834-17842. doi: 10.1002/anie.201911281http://dx.doi.org/10.1002/anie.201911281
WU J M, WANG L X, FENG A B, et al. Self-powered FA0.55MA0.45PbI3 single-crystal perovskite X-ray detectors with high sensitivity [J]. Adv. Funct. Mater., 2022, 32(9): 2109149-1-10. doi: 10.1002/adfm.202109149http://dx.doi.org/10.1002/adfm.202109149
LIU Y C, ZHANG Y X, ZHU X J, et al. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging [J]. Adv. Mater., 2021, 33(8): 2006010-1-10. doi: 10.1002/adma.202006010http://dx.doi.org/10.1002/adma.202006010
HE Y H, PAN W T, GUO C J, et al. 3D/2D perovskite single crystals heterojunction for suppressed ions migration in hard X-ray detection [J]. Adv. Funct. Mater., 2021, 31(49): 2104880-1-8. doi: 10.1002/adfm.202104880http://dx.doi.org/10.1002/adfm.202104880
LI H Y, SONG J M, PAN W T, et al. Sensitive and stable 2D perovskite single-crystal X-ray detectors enabled by a supramolecular anchor [J]. Adv. Mater., 2020, 32(40): 2003790-1-9. doi: 10.1002/adma.202003790http://dx.doi.org/10.1002/adma.202003790
SHEN Y, LIU Y C, YE H C, et al. Centimeter-sized single crystal of two-dimensional halide perovskites incorporating straight-chain symmetric diammonium ion for X-ray detection [J]. Angew. Chem. Int. Ed., 2020, 59(35): 14896-14902. doi: 10.1002/anie.202004160http://dx.doi.org/10.1002/anie.202004160
HEO S, SEO G, CHO K T, et al. Dimensionally engineered perovskite heterostructure for photovoltaic and optoelectronic applications [J]. Adv. Energy Mater., 2019, 9(45): 1902470-1-8. doi: 10.1002/aenm.201902470http://dx.doi.org/10.1002/aenm.201902470
XIAO Z W, SONG Z N, YAN Y F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives [J]. Adv. Mater., 2019, 31(47): 1803792-1-22. doi: 10.1002/adma.201803792http://dx.doi.org/10.1002/adma.201803792
WANG R, WANG J T, TAN S, et al. Opportunities and challenges of lead-free perovskite optoelectronic devices [J]. Trends Chem., 2019, 1(4): 368-379. doi: 10.1016/j.trechm.2019.04.004http://dx.doi.org/10.1016/j.trechm.2019.04.004
MAUGHAN A E, GANOSE A M, BORDELON M M, et al. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6 [J]. J. Am. Chem. Soc., 2016, 138(27): 8453-8464.
ZHOU X F, WANG Y S, GE C Y, et al. Lead-free perovskite single crystals: a brief review [J]. Crystals, 2021, 11(11): 1329-1-14. doi: 10.3390/cryst11111329http://dx.doi.org/10.3390/cryst11111329
LI M B, LI H Y, LI W J, et al. Oriented 2D perovskite wafers for anisotropic X-ray detection through a fast tableting strategy [J]. Adv. Mater., 2022, 34(8): 2108020-1-9. doi: 10.1002/adma.202108020http://dx.doi.org/10.1002/adma.202108020
PAN W C, WU H D, LUO J J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit [J]. Nat. Photonics, 2017, 11(11): 726-732. doi: 10.1038/s41566-017-0012-4http://dx.doi.org/10.1038/s41566-017-0012-4
YUAN W N, NIU G D, XIAN Y M, et al. In situ regulating the order-disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector [J]. Adv. Funct. Mater., 2019, 29(20): 1900234-1-9. doi: 10.1002/adfm.201900234http://dx.doi.org/10.1002/adfm.201900234
YIN L X, WU H D, PAN W C, et al. Controlled cooling for synthesis of Cs2AgBiBr6 single crystals and its application for X-ray detection [J]. Adv. Opt. Mater., 2019, 7(19): 1900491-1-8. doi: 10.1002/adom.201900491http://dx.doi.org/10.1002/adom.201900491
ZHUANG R Z, WANG X J, MA W B, et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response [J]. Nat. Photonics, 2019, 13(9): 602-608. doi: 10.1038/s41566-019-0466-7http://dx.doi.org/10.1038/s41566-019-0466-7
ZHENG X J, ZHAO W, WANG P, et al. Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites [J]. J. Energy Chem., 2020, 49: 299-306. doi: 10.1016/j.jechem.2020.02.049http://dx.doi.org/10.1016/j.jechem.2020.02.049
LI W, XIN D Y, TIE S J, et al. Zero-dimensional lead-free FA3Bi2I9 single crystals for high-performance X-ray detection [J]. J. Phys. Chem. Lett., 2021, 12(7): 1778-1785. doi: 10.1021/acs.jpclett.1c00090http://dx.doi.org/10.1021/acs.jpclett.1c00090
SONG X, HODES G, ZHAO K, et al. Metal-free organic halide perovskite: a new class for next optoelectronic generation devices [J]. Adv. Energy Mater., 2021, 11(11): 2003331-1-13. doi: 10.1002/aenm.202003331http://dx.doi.org/10.1002/aenm.202003331
CUI Q Y, SONG X, LIU Y C, et al. Halide-modulated self-assembly of metal-free perovskite single crystals for bio-friendly X-ray detection [J]. Matter, 2021, 4(7): 2490-2507. doi: 10.1016/j.matt.2021.05.018http://dx.doi.org/10.1016/j.matt.2021.05.018
CUI Q Y, LIU S F, ZHAO K. Structural and functional insights into metal-free perovskites [J]. J. Phys. Chem. Lett., 2022, 13(23): 5168-5178.
SONG X, CUI Q Y, LIU Y C, et al. Metal-free halide perovskite single crystals with very long charge lifetimes for efficient X-ray imaging [J]. Adv. Mater., 2020, 32(42): 2003353-1-8. doi: 10.1002/adma.202003353http://dx.doi.org/10.1002/adma.202003353
SONG X, LI Q, HAN J, et al. Highly luminescent metal-free perovskite single crystal for biocompatible X-ray detector to attain highest sensitivity [J]. Adv. Mater., 2021, 33(36): 2102190-1-10. doi: 10.1002/adma.202102190http://dx.doi.org/10.1002/adma.202102190
CUI Q Y, BU N, LIU X M, et al. Efficient eco-friendly flexible X-ray detectors based on molecular perovskite [J]. Nano Lett., 2022, 22(14): 5973-5981. doi: 10.1021/acs.nanolett.2c02071http://dx.doi.org/10.1021/acs.nanolett.2c02071
SIRBU D, TSUI H C L, ALSAIF N, et al. Wide-band-gap metal-free perovskite for third-order nonlinear optics [J]. ACS Photonics, 2021, 8(8): 2450-2458. doi: 10.1021/acsphotonics.1c00687http://dx.doi.org/10.1021/acsphotonics.1c00687
ZHANG P, HUA Y Q, XU Y D, et al. Ultrasensitive and robust 120 keV hard X-ray imaging detector based on mixed-halide perovskite CsPbBr3-nIn single crystals [J]. Adv. Mater., 2022, 34(12): 2106562-1-11. doi: 10.1002/adma.202106562http://dx.doi.org/10.1002/adma.202106562
LI X, ZHANG P, HUA Y Q, et al. Ultralow detection limit and robust hard X-ray imaging detector based on inch-sized lead-free perovskite Cs3Bi2Br9 single crystals [J]. ACS Appl. Mater. Interfaces, 2022, 14(7): 9340-9351. doi: 10.1021/acsami.1c24086http://dx.doi.org/10.1021/acsami.1c24086
LI X, DU X Y, ZHANG P, et al. Lead-free halide perovskite Cs3Bi2Br9 single crystals for high-performance X-ray detection [J]. Sci. China Mater., 2021, 64(6): 1427-1436. doi: 10.1007/s40843-020-1553-8http://dx.doi.org/10.1007/s40843-020-1553-8
LEI Y S, CHEN Y M, XU S. Single-crystal halide perovskites: opportunities and challenges [J]. Matter, 2021, 4(7): 2266-2308. doi: 10.1016/j.matt.2021.05.002http://dx.doi.org/10.1016/j.matt.2021.05.002
LI Z Z, PENG G Q, CHEN H Y, et al. Metal-free PAZE-NH4X3⋅H2O perovskite for flexible transparent X-ray detection and imaging [J]. Angew. Chem. Int. Ed., 2022, 61(36): e202207198-1-9. doi: 10.1002/anie.202207198http://dx.doi.org/10.1002/anie.202207198
LONG J, HUANG Z Q, ZHANG J Q, et al. Flexible perovskite solar cells: device design and perspective [J]. Flex. Print. Electron, 2020, 5(1): 013002-1-16. doi: 10.1088/2058-8585/ab556ehttp://dx.doi.org/10.1088/2058-8585/ab556e
0
浏览量
265
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构