浏览全部资源
扫码关注微信
南京大学 现代工程与应用科学学院, 江苏 南京 210000
[ "李曼亚(1998-),女,天津人,博士研究生,2021年于南京大学获得学士学位,主要从事柔性宽带隙钙矿太阳能电池的研究。E-mail: DZ21340023@smail. nju. edu. cn" ]
[ "谭海仁(1986-),男,江西赣州人,博士,教授,博士生导师,2015年于荷兰代尔夫特理工大学获得博士学位,主要从事全钙钛矿叠层太阳能电池与晶硅钙钛矿叠层太阳能电池的研究。 E-mail: hairentan@nju.edu.cn" ]
纸质出版日期:2023-03-05,
收稿日期:2022-09-28,
修回日期:2022-10-18,
移动端阅览
李曼亚,李禄东,刘洲等.柔性钙钛矿光伏:研究进展、商业化进程和展望[J].发光学报,2023,44(03):466-485.
LI Manya,LI Ludong,LIU Zhou,et al.Flexible Perovskite Photovoltaics: Progress, Commercialization and Prospects[J].Chinese Journal of Luminescence,2023,44(03):466-485.
李曼亚,李禄东,刘洲等.柔性钙钛矿光伏:研究进展、商业化进程和展望[J].发光学报,2023,44(03):466-485. DOI: 10.37188/CJL.20220355.
LI Manya,LI Ludong,LIU Zhou,et al.Flexible Perovskite Photovoltaics: Progress, Commercialization and Prospects[J].Chinese Journal of Luminescence,2023,44(03):466-485. DOI: 10.37188/CJL.20220355.
目前,推动能源产业向高效、清洁、灵活的体系转型已成为解决世界环境问题的关键。与此同时,随着技术革命和物联网的发展,将太阳能电池和设备集成到一个部件中从而在更多元化的应用场景中采集能量成为了人们的新需求。以聚苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)等柔性聚合物为基底的柔性钙钛矿太阳能电池(FPSCs)具有高能量转换效率、高柔韧性和灵活性、低制备成本和一定的便携性,在近十年的发展时间里成为了第三代太阳能电池中的后起之秀。此外,它对环境友好和经济效益良好的卷对卷制造技术具有的天然亲和力,使其在柔性自供电电子产品、大型建筑集成光伏(BIPV)和空间航空航天的发展中发挥着关键作用。本文着重讨论了柔性透明导电衬底、低温加工电荷传输层和机械弹性钙钛矿膜在单结和叠层FPSCs中的重要作用,并简要总结了其最新进展。最后,结合FPSCs的大规模制造技术,对封装的可靠性和操作稳定性提出了一些见解,并展望了在大面积组件等方面的潜在实际应用。
At present, promoting the transition of the energy industry to a system that is effective, clean, and flexible has currently emerged as the key to tackling the world's environmental issues. The progress of the Internet of Things and the technology revolution have created a new demand to combine solar equipment and cells into a single component in order to collect energy in a wider range of application situations. Flexible perovskite solar cells(FPSCs) based on flexible polymers such as polyethylene terephthalate (PET) and polyethylene naphthalate(PEN) have emerged as a rising star in the third generation of solar cells in the past decade due to their high energy conversion efficiency, high flexibility, low preparation cost and certain portability. In addition, it has a natural affinity for environmentally friendly and economically beneficial roll-to-roll manufacturing technology which will enable it to play a key role in the development of flexible self-powered electronic products, large-scale building integrated photovoltaic(BIPV) and space aerospace. In this review, we emphatically discuss the critical role and briefly summarize the most recent developments of the flexible transparent conductive substrate, low-temperature processed charge transporting layer, and mechanically resilient perovskite film in single and tandem FPSCs. Finally, combined with the large-scale manufacturing technology of FPSCs, we offer some insight into the reliability and operational stability of the package and discuss potential practical applications in large-area modules and so forth.
柔性钙钛矿太阳能电池柔性钙钛矿叠层太阳能电池光伏组件
flexibleperovskite solar cellflexible perovskite tandem solar cellphotovoltaic module
IRENA. Global Energy Transformation: A Roadmap to 2050 (2019 Edition) [M]. Abu Dhabi: International Renewable Energy Agency, 2019.
LANG F, NICKEL N H, BUNDESMANN J, et al. Radiation hardness and self-healing of perovskite solar cells [J]. Adv. Mater., 2016, 28(39): 8726-8731. doi: 10.1002/adma.201603326http://dx.doi.org/10.1002/adma.201603326
LI G, YANG Y, DEVINE R A B, et al. Radiation induced damage and recovery in poly(3-hexyl thiophene) based polymer solar cells [J]. Nanotechnology, 2008, 19(42): 424014-1-4. doi: 10.1088/0957-4484/19/42/424014http://dx.doi.org/10.1088/0957-4484/19/42/424014
PATERNÒ G M, ROBBIANO V, SANTARELLI L, et al. Perovskite solar cell resilience to fast neutrons [J]. Sustain. Energy Fuels, 2019, 3(10): 2561-2566. doi: 10.1039/c9se00102fhttp://dx.doi.org/10.1039/c9se00102f
BOLDYREVA A G, AKBULATOV A F, TSAREV S A, et al. γ-ray-induced degradation in the triple-cation perovskite solar cells [J]. J. Phys. Chem. Lett., 2019, 10(4): 813-818. doi: 10.1021/acs.jpclett.8b03222http://dx.doi.org/10.1021/acs.jpclett.8b03222
PÉREZ-DEL-REY D, DREESSEN C, IGUAL-MUÑOZ A M, et al. Perovskite solar cells: stable under space conditions [J]. Sol. RRL, 2020, 4(12): 2000447-1-6. doi: 10.1002/solr.202000447http://dx.doi.org/10.1002/solr.202000447
COJOCARU L, UCHIDA S, SANEHIRA Y, et al. Temperature effects on the photovoltaic performance of planar structure perovskite solar cells [J]. Chem. Lett., 2015, 44(11): 1557-1559. doi: 10.1246/cl.150781http://dx.doi.org/10.1246/cl.150781
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. doi: 10.1021/ja809598rhttp://dx.doi.org/10.1021/ja809598r
MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes [J]. Nature, 2021, 598(7881): 444-450. doi: 10.1038/s41586-021-03964-8http://dx.doi.org/10.1038/s41586-021-03964-8
NREL. Best research-cell efficiency chart [EB/OL]. [2022-06-30]. https://www.nrel.gov/pv/cell-efficiency.htmlhttps://www.nrel.gov/pv/cell-efficiency.html. doi: 10.2172/6700http://dx.doi.org/10.2172/6700
PARK M, KIM H J, JEONG I, et al. Mechanically recoverable and highly efficient perovskite solar cells: investigation of intrinsic flexibility of organic-inorganic perovskite [J]. Adv. Energy Mater., 2015, 5(22): 1501406-1-11. doi: 10.1002/aenm.201501406http://dx.doi.org/10.1002/aenm.201501406
CARDINALETTI I, VANGERVEN T, NAGELS S, et al. Organic and perovskite solar cells for space applications [J]. Sol. Energy Mater. Sol. Cells, 2018, 182: 121-127. doi: 10.1016/j.solmat.2018.03.024http://dx.doi.org/10.1016/j.solmat.2018.03.024
DUNLAP-SHOHL W A, ZHOU Y Y, PADTURE N P, et al. Synthetic approaches for halide perovskite thin films [J]. Chem. Rev., 2019, 119(5): 3193-3295. doi: 10.1021/acs.chemrev.8b00318http://dx.doi.org/10.1021/acs.chemrev.8b00318
KIM J, YUN J S, CHO Y, et al. Overcoming the challenges of large-area high-efficiency perovskite solar cells [J]. ACS Energy Lett., 2017, 2(9): 1978-1984. doi: 10.1021/acsenergylett.7b00573http://dx.doi.org/10.1021/acsenergylett.7b00573
GONG O Y, HAN G S, LEE S, et al. Van der Waals force-assisted heat-transfer engineering for overcoming limited efficiency of flexible perovskite solar cells [J]. ACS Energy Lett., 2022, 7(9): 2893-2903. doi: 10.1021/acsenergylett.2c01391http://dx.doi.org/10.1021/acsenergylett.2c01391
FUAD A, FIBRIYANTI A A, MUFTI N, et al. Growth of CH3NH3PbI3 perovskite on stainless steel substrate layered by ZnO nanoparticles using one-step spin coating route [J]. J. Phys.: Conf. Ser., 2018, 1011: 012011-1-5. doi: 10.1088/1742-6596/1011/1/012011http://dx.doi.org/10.1088/1742-6596/1011/1/012011
MARCHIORO A, DUALEH A, PUNZI A, et al. Effect of posttreatment of titania mesoscopic films by TiCl4 in solid-state dye-sensitized solar cells: a time-resolved spectroscopy study [J]. J. Phys. Chem. C, 2012, 116(51): 26721-26727. doi: 10.1021/jp309799uhttp://dx.doi.org/10.1021/jp309799u
ZHAO B F, HE Z C, CHENG X P, et al. Flexible polymer solar cells with power conversion efficiency of 8.7% [J]. J. Mater. Chem. C, 2014, 2(26): 5077-5082. doi: 10.1039/c3tc32520bhttp://dx.doi.org/10.1039/c3tc32520b
ZARDETTO V, BROWN T M, REALE A, et al. Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties [J]. J. Polym. Sci. Part B: Polym. Phys., 2011, 49(9): 638-648. doi: 10.1002/polb.22227http://dx.doi.org/10.1002/polb.22227
CRUZ S M F, ROCHA L A, VIANA L C. Printing technologies on flexible substrates for printed electronics [M/OL]. RACKAUSKAS S. Flexible Electronics. London: IntechOpen, 2018. [2022-10-18]. https://www.intechopen.com/books/6765https://www.intechopen.com/books/6765. doi: 10.5772/intechopen.76161http://dx.doi.org/10.5772/intechopen.76161
LI M H, ZHOU J J, TAN L G, et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency [J]. Innovation, 2022, 3(6): 100310-1-7. doi: 10.1016/j.xinn.2022.100310http://dx.doi.org/10.1016/j.xinn.2022.100310
LI L D, WANG Y R, WANG X Y, et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact [J]. Nat. Energy, 2022, 7(8): 708-717. doi: 10.1038/s41560-022-01045-2http://dx.doi.org/10.1038/s41560-022-01045-2
BURST J M, RANCE W L, MEYSING D M, et al. Performance of transparent conductors on flexible glass and plastic substrates for thin film photovoltaics [C]. Proceedings of the IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, 2014: 1589-1592. doi: 10.1109/pvsc.2014.6925223http://dx.doi.org/10.1109/pvsc.2014.6925223
DOU B J, MILLER E M, CHRISTIANS J A, et al. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO [J]. J. Phys. Chem. Lett., 2017, 8(19): 4960-4966. doi: 10.1021/acs.jpclett.7b02128http://dx.doi.org/10.1021/acs.jpclett.7b02128
JIN J, LEE D, IM H G, et al. Chitin nanofiber transparent paper for flexible green electronics [J]. Adv. Mater., 2016, 28(26): 5169-5175. doi: 10.1002/adma.201600336http://dx.doi.org/10.1002/adma.201600336
WU J, CHEN P, XU H, et al. Ultralight flexible perovskite solar cells [J]. Sci. China Mater., 2022, 65(9): 2319-2324. doi: 10.1007/s40843-022-2075-7http://dx.doi.org/10.1007/s40843-022-2075-7
XUE D J, HOU Y, LIU S C, et al. Regulating strain in perovskite thin films through charge-transport layers [J]. Nat. Commun., 2020, 11(1): 1514-1-8. doi: 10.1038/s41467-020-15338-1http://dx.doi.org/10.1038/s41467-020-15338-1
李铃薇. 反式结构钙钛矿太阳能电池的制备及其改性研究 [D]. 西安: 西安理工大学, 2019. doi: 10.30919/esee8c722http://dx.doi.org/10.30919/esee8c722
LI L W. Preparation and Modification of Inverted Structured Perovskite Solar Cell Devices [D]. Xi’an: Xi’an University of Technology, 2019. (in Chinese). doi: 10.30919/esee8c722http://dx.doi.org/10.30919/esee8c722
MAHMOOD K, SARWAR S, MEHRAN M T. Current status of electron transport layers in perovskite solar cells: materials and properties [J]. RSC Adv., 2017, 7(28): 17044-17062. doi: 10.1039/c7ra00002bhttp://dx.doi.org/10.1039/c7ra00002b
YANG D, YANG R X, ZHANG J, et al. High efficiency flexible perovskite solar cells using superior low temperature TiO2 [J]. Energy Environ. Sci., 2015, 8(11): 3208-3214. doi: 10.1039/c5ee02155chttp://dx.doi.org/10.1039/c5ee02155c
DENG X Y, WILKES G C, CHEN A Z, et al. Room-temperature processing of TiOx electron transporting layer for perovskite solar cells [J]. J. Phys. Chem. Lett., 2017, 8(14): 3206-3210. doi: 10.1021/acs.jpclett.7b01466http://dx.doi.org/10.1021/acs.jpclett.7b01466
MALI S S, HONG C K, INAMDAR A I, et al. Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO2 electron transporting layers [J]. Nanoscale, 2017, 9(9): 3095-3104. doi: 10.1039/c6nr09032jhttp://dx.doi.org/10.1039/c6nr09032j
BU T L, LI J, ZHENG F, et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module [J]. Nat. Commun., 2018, 9(1): 4609-1-10. doi: 10.1038/s41467-018-07099-9http://dx.doi.org/10.1038/s41467-018-07099-9
ZHONG M Y, LIANG Y Q, ZHANG J Q, et al. Highly efficient flexible MAPbI3 solar cells with a fullerene derivative-modified SnO2 layer as the electron transport layer [J]. J. Mater. Chem. A, 2019, 7(12): 6659-6664. doi: 10.1039/c9ta00398chttp://dx.doi.org/10.1039/c9ta00398c
KUMAR M H, YANTARA N, DHARANI S, et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells [J]. Chem. Commun., 2013, 49(94): 11089-11091. doi: 10.1039/c3cc46534ahttp://dx.doi.org/10.1039/c3cc46534a
HEO J H, LEE M H, HAN H J, et al. Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells [J]. J. Mater. Chem. A, 2016, 4(5): 1572-1578. doi: 10.1039/c5ta09520dhttp://dx.doi.org/10.1039/c5ta09520d
CHUNG J, SHIN S S, HWANG K, et al. Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer [J]. Energy Environ. Sci., 2020, 13(12): 4854-4861. doi: 10.1039/d0ee02164dhttp://dx.doi.org/10.1039/d0ee02164d
SHIN S S, YANG W S, NOH J H, et al. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 ℃ [J]. Nat. Commun., 2015, 6: 7410-1-8. doi: 10.1038/ncomms8410http://dx.doi.org/10.1038/ncomms8410
KIM B J, KIM D H, LEE Y Y, et al. Highly efficient and bending durable perovskite solar cells: toward a wearable power source [J]. Energy Environ. Sci., 2015, 8(3): 916-921. doi: 10.1039/c4ee02441ahttp://dx.doi.org/10.1039/c4ee02441a
ZHANG P, WU J, ZHANG T, et al. Perovskite solar cells with ZnO electron-transporting materials [J]. Adv. Mater., 2018, 30(3): 1703737-1-20. doi: 10.1002/adma.201703737http://dx.doi.org/10.1002/adma.201703737
LI X, YANG J Y, JIANG Q H, et al. Low temperature processed ternary oxide as an electron transport layer for efficient and stable perovskite solar cells [J]. Electrochim. Acta, 2018, 261: 474-481. doi: 10.1016/j.electacta.2017.12.182http://dx.doi.org/10.1016/j.electacta.2017.12.182
JIANG Q, ZHANG X W, YOU J B. SnO2: a wonderful electron transport layer for perovskite solar cells [J]. Small, 2018, 14(31): 1801154-1-14. doi: 10.1002/smll.201801154http://dx.doi.org/10.1002/smll.201801154
LIU C, ZHANG L Z, ZHOU X Y, et al. Hydrothermally treated SnO2 as the electron transport layer in high-efficiency flexible perovskite solar cells with a certificated efficiency of 17.3% [J]. Adv. Funct. Mater., 2019, 29(47): 1807604-10. doi: 10.1002/adfm.201807604http://dx.doi.org/10.1002/adfm.201807604
ZHU N, QI X, ZHANG Y Q, et al. High efficiency (18.53%) of flexible perovskite solar cells via the insertion of potassium chloride between SnO2 and CH3NH3PbI3 layers [J]. ACS Appl. Energy Mater., 2019, 2(5): 3676-3682. doi: 10.1021/acsaem.9b00391http://dx.doi.org/10.1021/acsaem.9b00391
CAO B B, YANG L K, JIANG S S, et al. Flexible quintuple cation perovskite solar cells with high efficiency [J]. J. Mater. Chem. A, 2019, 7(9): 4960-4970. doi: 10.1039/c8ta11945ghttp://dx.doi.org/10.1039/c8ta11945g
LI X G, SHI Z J, BEHROUZNEJAD F, et al. Highly efficient flexible perovskite solar cells with vacuum-assisted low-temperature annealed SnO2 electron transport layer [J]. J. Energy Chem., 2022, 67: 1-7. doi: 10.1016/j.jechem.2021.09.021http://dx.doi.org/10.1016/j.jechem.2021.09.021
PAIK M J, YOO J W, PARK J, et al. SnO2⁃TiO2 hybrid electron transport layer for efficient and flexible perovskite solar cells [J]. ACS Energy Lett., 2022, 7(5): 1864-1870. doi: 10.1021/acsenergylett.2c00637http://dx.doi.org/10.1021/acsenergylett.2c00637
YANG D, YANG R X, REN X D, et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport [J]. Adv. Mater., 2016, 28(26): 5206-5213. doi: 10.1002/adma.201600446http://dx.doi.org/10.1002/adma.201600446
BAI Y, DONG Q F, SHAO Y C, et al. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene [J]. Nat Commun., 2016, 7: 12806-1-9. doi: 10.1038/ncomms12806http://dx.doi.org/10.1038/ncomms12806
MA S, QIAO W Y, CHENG T, et al. Optical⁃electrical⁃chemical engineering of PEDOT∶PSS by incorporation of hydrophobic nafion for efficient and stable perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2018, 10(4): 3902-3911. doi: 10.1021/acsami.7b19053http://dx.doi.org/10.1021/acsami.7b19053
YIN X T, CHEN P, QUE M D, et al. Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts [J]. ACS Nano, 2016, 10(3): 3630-3636. doi: 10.1021/acsnano.5b08135http://dx.doi.org/10.1021/acsnano.5b08135
ZHANG S H, WANG H Y, DUAN X, et al. Printable and homogeneous NiOx hole transport layers prepared by a polymer-network gel method for large-area and flexible perovskite solar cells [J]. Adv. Funct. Mater., 2021, 31(47): 2106495-1-10. doi: 10.1002/adfm.202106495http://dx.doi.org/10.1002/adfm.202106495
YU J C, HONG J A, JUNG E D, et al. Highly efficient and stable inverted perovskite solar cell employing PEDOT∶GO composite layer as a hole transport layer [J]. Sci. Rep., 2018, 8(1): 1070-1-9. doi: 10.1038/s41598-018-19612-7http://dx.doi.org/10.1038/s41598-018-19612-7
POORKAZEM K, LIU D Y, KELLY T L. Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell [J]. J. Mater. Chem. A, 2015, 3(17): 9241-9248. doi: 10.1039/c5ta00084jhttp://dx.doi.org/10.1039/c5ta00084j
MENG X C, CAI Z R, ZHANG Y Y, et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells [J]. Nat. Commun., 2020, 11(1): 3016-1-10. doi: 10.1038/s41467-020-16831-3http://dx.doi.org/10.1038/s41467-020-16831-3
XUE T Y, CHEN G S, HU X T, et al. Mechanically robust and flexible perovskite solar cells via a printable and gelatinous interface [J]. ACS Appl. Mater. Interfaces, 2021, 13(17): 19959-19969. doi: 10.1021/acsami.1c00813http://dx.doi.org/10.1021/acsami.1c00813
PARK M, PARK J S, HAN I K, et al. High-performance flexible and air-stable perovskite solar cells with a large active area based on poly(3-hexylthiophene) nanofibrils [J]. J. Mater. Chem. A, 2016, 4(29): 11307-11316. doi: 10.1039/c6ta03164ahttp://dx.doi.org/10.1039/c6ta03164a
WANG Q, BI C, HUANG J S. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells [J]. Nano Energy, 2015, 15: 275-280. doi: 10.1016/j.nanoen.2015.04.029http://dx.doi.org/10.1016/j.nanoen.2015.04.029
FENG J S, ZHU X J, YANG Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy [J]. Adv. Mater., 2018, 30(35): 1801418-1-9. doi: 10.1002/adma.201801418http://dx.doi.org/10.1002/adma.201801418
HU X T, MENG X C, YANG X, et al. Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness [J]. Sci. Bull., 2021, 66(6): 527-535. doi: 10.1016/j.scib.2020.10.023http://dx.doi.org/10.1016/j.scib.2020.10.023
DUAN X P, LI X, TAN L C, et al. Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells [J]. Adv. Mater., 2020, 32(26): 2000617-1-11. doi: 10.1002/adma.202000617http://dx.doi.org/10.1002/adma.202000617
MENG X C, XING Z, HU X T, et al. Stretchable perovskite solar cells with recoverable performance [J]. Angew. Chem. Int. Ed., 2020, 59(38): 16602-16608. doi: 10.1002/anie.202003813http://dx.doi.org/10.1002/anie.202003813
LIN R X, XIAO K, QIN Z Y, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(Ⅱ) oxidation in precursor ink [J]. Nat. Energy, 2019, 4(14): 864-873. doi: 10.1038/s41560-019-0466-3http://dx.doi.org/10.1038/s41560-019-0466-3
DING Y, DING B, KANDA H, et al. Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules [J]. Nat. Nanotechnol., 2022, 17(6): 598-605. doi: 10.1038/s41565-022-01108-1http://dx.doi.org/10.1038/s41565-022-01108-1
KOTHANDARAMAN R K, JIANG Y, FEURER T, et al. Near-infrared-transparent perovskite solar cells and perovskite-based tandem photovoltaics [J]. Small Methods, 2020, 4(10): 2000395-1-56. doi: 10.1002/smtd.202000395http://dx.doi.org/10.1002/smtd.202000395
HEO J H, LEE D S, SHIN D H, et al. Recent advancements in and perspectives on flexible hybrid perovskite solar cells [J]. J. Mater. Chem. A, 2019, 7(3): 888-900. doi: 10.1039/c8ta09452ghttp://dx.doi.org/10.1039/c8ta09452g
MCMEEKIN D P, SADOUGHI G, REHMAN W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells [J]. Science, 2016, 351(6269): 151-155. doi: 10.1126/science.aad5845http://dx.doi.org/10.1126/science.aad5845
STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties [J]. Inorg. Chem., 2013, 52(15): 9019-9038. doi: 10.1021/ic401215xhttp://dx.doi.org/10.1021/ic401215x
IM J, STOUMPOS C C, JIN H, et al. Antagonism between spin⁃orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1-xPbxI3 [J]. J. Phys. Chem. Lett., 2015, 6(17): 3503-3509. doi: 10.1021/acs.jpclett.5b01738http://dx.doi.org/10.1021/acs.jpclett.5b01738
CHEN C C, BAE S H, CHANG W H, et al. Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process [J]. Mater. Horiz., 2015, 2(2): 203-211. doi: 10.1039/c4mh00237ghttp://dx.doi.org/10.1039/c4mh00237g
LIU Y, RENNA L A, BAG M, et al. High efficiency tandem thin-perovskite/polymer solar cells with a graded recombination layer [J]. ACS Appl. Mater. Interfaces, 2016, 8(11): 7070-7076. doi: 10.1021/acsami.5b12740http://dx.doi.org/10.1021/acsami.5b12740
LI Z, WU S F, ZHANG J, et al. Hybrid perovskite-organic flexible tandem solar cell enabling highly efficient electrocatalysis overall water splitting [J]. Adv. Energy Mater., 2020, 10(18): 2000361-1-9. doi: 10.1002/aenm.202000361http://dx.doi.org/10.1002/aenm.202000361
PISONI S, FU F, FEURER T, et al. Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices [J]. J. Mater. Chem. A, 2017, 5(26): 13639-13647. doi: 10.1039/c7ta04225fhttp://dx.doi.org/10.1039/c7ta04225f
SOLLIANCE. Record breaking 23% efficiency proved for flexible perovskite/CIGS-tandem [EB/OL]. [2019-09-12]. https://www.semiconductorpackagingnews.com/uploads/1/Press_20Release_20Flexible_20Tandem_2023pct_20final_1.pdfhttps://www.semiconductorpackagingnews.com/uploads/1/Press_20Release_20Flexible_20Tandem_2023pct_20final_1.pdf.
CARRON R, NISHIWAKI S, FEURER T, et al. Advanced alkali treatments for high-efficiency Cu(In, Ga)Se2 solar cells on flexible substrates [J]. Adv. Energy Mater., 2019, 9(24): 1900408-1-8. doi: 10.1002/aenm.201900408http://dx.doi.org/10.1002/aenm.201900408
MIASOLE HI⁃TECH CORP. 10 Feb world record efficiency of 26.5% on a tandem solar cell based on a flexible CIGS solar cell [EB/OL]. [2021-02-17]. https://www.prnewswire.com/news-releases/10-feb-world-record-efficiency-of-26-5-on-a-tandem-solar-cell-based-on-a-flexible-cigs-solar-cell-301230495.htmlhttps://www.prnewswire.com/news-releases/10-feb-world-record-efficiency-of-26-5-on-a-tandem-solar-cell-based-on-a-flexible-cigs-solar-cell-301230495.html.
GU F, NISHIWAKI S, WERNER J, et al. Flexible perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells [EB/OL]. [2019-07-24]. https://arxiv.org/abs/1907.10330https://arxiv.org/abs/1907.10330.
GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (Version 60) [J]. Prog. Photovolt.: Res. Appl., 2022, 30(7): 687-701. doi: 10.1002/pip.3444http://dx.doi.org/10.1002/pip.3444
DING Y, DING B, KANDA H, et al. Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules [J]. Nat. Nanotechnol., 2022, 17(6): 598-605. doi: 10.1038/s41565-022-01108-1http://dx.doi.org/10.1038/s41565-022-01108-1
PALMSTROM A F, EPERON G E, LEIJTENS T, et al. Enabling flexible all-perovskite tandem solar cells [J]. Joule, 2019, 3(9): 2193-2204. doi: 10.1016/j.joule.2019.05.009http://dx.doi.org/10.1016/j.joule.2019.05.009
陈捷达, 李东栋, 朱绪飞, 等. 柔性钙钛矿电池的机械稳定性提升策略 [J]. 光学 精密工程, 2022, 30(19): 23327. doi: 10.37188/OPE.20223019.2332http://dx.doi.org/10.37188/OPE.20223019.2332
CHEN J D, LI D D, ZHU X F, et al. Strategy of improving mechanical stability of flexible perovskite solar cells [J]. Opt. Precision Eng., 2022, 30(19): 2332-2352. (in Chinese). doi: 10.37188/OPE.20223019.2332http://dx.doi.org/10.37188/OPE.20223019.2332
FENG J. Mechanical properties of hybrid organic-inorganic CH3NH3BX3(B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers [J]. APL Mater., 2018, 2(8): 081801-1-8.
HE X L, LIU M, YANG G J, et al. Photovoltaic performance degradation and recovery of the flexible dye-sensitized solar cells by bending and relaxing [J]. J. Power Sources, 2013, 226: 173-178. doi: 10.1016/j.jpowsour.2012.10.056http://dx.doi.org/10.1016/j.jpowsour.2012.10.056
KIM D H, WHITAKER J B, LI Z, et al. Outlook and challenges of perovskite solar cells toward terawatt-scale photovoltaic module technology [J]. Joule, 2018, 2(8): 1437-1451. doi: 10.1016/j.joule.2018.05.011http://dx.doi.org/10.1016/j.joule.2018.05.011
DAI X Z, DENG Y H, VAN BRACKLE C H, et al. Meniscus fabrication of halide perovskite thin films at high throughput for large area and low-cost solar panels [J]. Int. J. Extrem. Manuf., 2019, 1(2): 022004-1-14. doi: 10.1088/2631-7990/ab263ehttp://dx.doi.org/10.1088/2631-7990/ab263e
HOSHI Y, KATO H O, FUNATSU K. Structure and electrical properties of ITO thin films deposited at high rate by facing target sputtering [J]. Thin Solid Films, 2003, 445(2): 245-250. doi: 10.1016/s0040-6090(03)01182-9http://dx.doi.org/10.1016/s0040-6090(03)01182-9
PARK S K, HAN J I, KIM W K, et al. Deposition of indium-tin-oxide films on polymer substrates for application in plastic-based flat panel displays [J]. Thin Solid Films, 2001, 397(1-2): 49-55. doi: 10.1016/s0040-6090(01)01489-4http://dx.doi.org/10.1016/s0040-6090(01)01489-4
LEE H C. Electron scattering mechanisms in indium-tin-oxide thin films prepared at the various process conditions [J]. Appl. Surf. Sci., 2006, 252(10): 3428-3435. doi: 10.1016/j.apsusc.2005.03.203http://dx.doi.org/10.1016/j.apsusc.2005.03.203
KIM H, GILMORE C M, PIQUÉ A, et al. Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices [J]. J. Appl. Phys., 1999, 86(11): 6451-6461. doi: 10.1063/1.371708http://dx.doi.org/10.1063/1.371708
BELLINGHAM J R, PHILLIPS W A, ADKINS C J. Electrical and optical properties of amorphous indium oxide [J]. J. Phys.: Condens. Matter, 1990, 2(8): 6207-6221. doi: 10.1088/0953-8984/2/28/011http://dx.doi.org/10.1088/0953-8984/2/28/011
CHENG I C, WAGNER S. Overview of flexible electronics technology [M]. SALLEO A, WONG W S. Flexible Electronics: Materials and Applications. Boston: Springer, 2009. doi: 10.1007/978-0-387-74363-9_1http://dx.doi.org/10.1007/978-0-387-74363-9_1
SIMONIS F, VAN DER LEIJ M, HOOGENDOORN C J. Physics of doped tin dioxide films for spectral-selective surfaces [J]. Sol. Energy Mater., 1979, 1(3-4): 221-231. doi: 10.1016/0165-1633(79)90040-6http://dx.doi.org/10.1016/0165-1633(79)90040-6
KIM Y Y, YANG T Y, SUHONEN R, et al. Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window [J]. Nat. Commun., 2020, 11(1): 5146-1-11. doi: 10.1038/s41467-020-18940-5http://dx.doi.org/10.1038/s41467-020-18940-5
FENG J S, JIAO Y X, WANG H, et al. High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells [J]. Energy Environ. Sci., 2021, 14(5): 3035-3043. doi: 10.1039/d1ee00634ghttp://dx.doi.org/10.1039/d1ee00634g
JUNG H S, HAN G S, PARK N G, et al. Flexible perovskite solar cells [J]. Joule, 2019, 3(8): 1850-1880. doi: 10.1016/j.joule.2019.07.023http://dx.doi.org/10.1016/j.joule.2019.07.023
MOON S J, YUM J H, LÖFGREN L, et al. Laser-scribing patterning for the production of organometallic halide perovskite solar modules [J]. IEEE J. Photovolt., 2015, 5(4): 1087-1092. doi: 10.1109/jphotov.2015.2416913http://dx.doi.org/10.1109/jphotov.2015.2416913
PALMA A L, MATTEOCCI F, AGRESTI A, et al. Laser-patterning engineering for perovskite solar modules with 95% aperture ratio [J]. IEEE J. Photovolt., 2017, 7(6): 1674-1680. doi: 10.1109/jphotov.2017.2732223http://dx.doi.org/10.1109/jphotov.2017.2732223
RAKOCEVIC L, GEHLHAAR R, MERCKX T, et al. Interconnection optimization for highly efficient perovskite modules [J]. IEEE J. Photovolt., 2017, 7(1): 404-408. doi: 10.1109/jphotov.2016.2626144http://dx.doi.org/10.1109/jphotov.2016.2626144
DI GIACOMO F, ZARDETTO V, D’EPIFANIO A, et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates [J]. Adv. Energy Mater., 2015, 5(8): 1401808-1-9. doi: 10.1002/aenm.201401808http://dx.doi.org/10.1002/aenm.201401808
DAGAR J, CASTRO-HERMOSA S, GASBARRI M, et al. Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers [J]. Nano Res., 2018, 11(5): 2669-2681. doi: 10.1007/s12274-017-1896-5http://dx.doi.org/10.1007/s12274-017-1896-5
ZHU X Y, DONG H, CHEN J B, et al. Photoinduced cross linkable polymerization of flexible perovskite solar cells and modules by incorporating benzyl acrylate [J]. Adv. Funct. Mater., 2022, 32(30): 2202408-1-8. doi: 10.1002/adfm.202202408http://dx.doi.org/10.1002/adfm.202202408
WONG-STRINGER M, GAME O S, SMITH J A, et al. High-performance multilayer encapsulation for perovskite photovoltaics [J]. Adv. Energy Mater., 2018, 8(24): 1801234-1-11. doi: 10.1002/aenm.201801234http://dx.doi.org/10.1002/aenm.201801234
WEERASINGHE H C, DKHISSI Y, SCULLY A D, et al. Encapsulation for improving the lifetime of flexible perovskite solar cells [J]. Nano Energy, 2015, 18: 118-125. doi: 10.1016/j.nanoen.2015.10.006http://dx.doi.org/10.1016/j.nanoen.2015.10.006
LEE Y I, JEON N J, KIM B J, et al. A low-temperature thin-film encapsulation for enhanced stability of a highly efficient perovskite solar cell [J]. Adv. Energy Mater., 2018, 8(9): 1701928-1-8. doi: 10.1002/aenm.201701928http://dx.doi.org/10.1002/aenm.201701928
XIAO K, LIN Y H, ZHANG M, et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules [J]. Science, 2022, 376(6594): 762-767. doi: 10.1126/science.abn7696http://dx.doi.org/10.1126/science.abn7696
JIANG Y, QIU L B, JUAREZ-PEREZ E J, et al. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation [J]. Nat. Energy, 2019, 4(7): 585-593. doi: 10.1038/s41560-019-0406-2http://dx.doi.org/10.1038/s41560-019-0406-2
LI X, ZHANG F, HE H Y, et al. On-device lead sequestration for perovskite solar cells [J]. Nature, 2020, 578(7796): 555-558. doi: 10.1038/s41586-020-2001-xhttp://dx.doi.org/10.1038/s41586-020-2001-x
0
浏览量
662
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构