浏览全部资源
扫码关注微信
1.上海大学 新型显示技术及应用集成教育部重点实验室, 上海 200072
2.上海大学 微电子学院, 上海 200444
3.上海大学 材料科学与工程学院, 上海 200444
[ "吴马佳奇(1996-),男,浙江余姚人,硕士研究生,2019年于浙江农林大学获得学士学位,主要从事无机薄膜材料性能的研究。 E-mail: wumjq@shu.edu.cn" ]
[ "杨连乔(1979-),女,河北保定人,博士,副研究员,博士生导师,2009年于韩国明知大学获得博士学位,主要从事功率器件的热管理及可靠性、光电器件的研究。" ]
纸质出版日期:2023-04-05,
收稿日期:2022-09-26,
修回日期:2022-10-22,
移动端阅览
吴马佳奇,张驰,王伟高等.基于中性层技术提升柔性OLED弯曲可靠性研究进展[J].发光学报,2023,44(04):701-716.
WU Majiaqi,ZHANG Chi,WANG Weigao,et al.Research Progress on Improving Bending Reliability of Flexible OLED Based on Neutral Layer Technology[J].Chinese Journal of Luminescence,2023,44(04):701-716.
吴马佳奇,张驰,王伟高等.基于中性层技术提升柔性OLED弯曲可靠性研究进展[J].发光学报,2023,44(04):701-716. DOI: 10.37188/CJL.20220351.
WU Majiaqi,ZHANG Chi,WANG Weigao,et al.Research Progress on Improving Bending Reliability of Flexible OLED Based on Neutral Layer Technology[J].Chinese Journal of Luminescence,2023,44(04):701-716. DOI: 10.37188/CJL.20220351.
有机发光二极管(OLED)由于具有结构简单、发光效率高、制造工艺简单和厚度超薄的特点,结合柔性基底可以制备具有弯曲和折叠功能的柔性OLED器件,在柔性显示、柔性照明等领域发挥了重要作用。在承受以弯曲为主的外加载荷时,柔性OLED器件中的无机薄膜很容易出现裂纹、脱层和屈曲等形式的失效,这些失效会使器件的导电性下降并破坏器件原有的结构,从而影响器件的效率与可靠性。中性层的使用能够有效减小器件关键部位的应变,从而减轻或消除失效,器件在弯曲状态下的可靠性也得以提高。近年来,一系列基于柔性OLED器件中性层的研究被陆续报道。本文综述了中性层技术在柔性OLED器件上的应用。首先,讨论了中性层的概念以及单个中性层位置的确定方法;其次,介绍了单个中性层和多个中性层在实际器件中的应用;最后,对柔性OLED器件未来的发展方向做出了展望。
Due to the simple structure, high light-emitting efficiency, simple manufacturing process and ultra-thin thickness characteristics for organic light-emitting diode (OLED), flexible OLED devices with bending and folding capabilities can be fabricated by combining flexible substrates. These devices play an important role in flexible display, flexible lighting and other fields. When subjected to external load mainly bending, the inorganic thin films in the flexible OLED devices are prone to failure in the form of cracks, delamination and buckling. These failures reduce the conductivity and destroy the original structure of the devices, thereby affecting their efficiency and reliability. The use of the neutral layer can effectively reduce the strain in the key parts of the devices, thereby reducing or eliminating failure, and the reliability of the devices in the bending state can also be improved. In recent years, a series of studies based on neutral layers of flexible OLED devices have been reported successively. This paper reviews the application of neutral layer technology in flexible OLED devices. Firstly, the concept of neutral layer and the method of determining the single neutral layer's position are discussed. Then, the application of single neutral layer and multiple neutral layers in practical devices is introduced. Finally, we give an outlook on the future development direction of flexible OLED devices.
柔性OLED器件中性层弯曲半径黏附层
flexible OLED deviceneutral layerbending radiusadhesion layer
JIN D U, KIM T W, KOO H W, et al. 47.1: Invited paper: highly robust flexible AMOLED display on plastic substrate with new structure [J]. SID Symp. Dig. Tech. Pap., 2010, 41(1): 703-705. doi: 10.1889/1.3500565http://dx.doi.org/10.1889/1.3500565
KOMATSU R, NAKAZATO R, SASAKI T, et al. 25.2: Repeatedly foldable book-type AMOLED display [J]. SID Symp. Dig. Tech. Pap., 2014, 45(1): 326-329. doi: 10.1002/j.2168-0159.2014.tb00088.xhttp://dx.doi.org/10.1002/j.2168-0159.2014.tb00088.x
JIA Y Z, LIU Z Z, WU D, et al. Mechanical simulation of foldable AMOLED panel with a module structure [J]. Org. Electron., 2019, 65: 185-192. doi: 10.1016/j.orgel.2018.11.026http://dx.doi.org/10.1016/j.orgel.2018.11.026
MATIVENGA M, GENG D, KIM B, et al. Fully transparent and rollable electronics [J]. ACS Appl. Mater. Interfaces, 2015, 7(3): 1578-1585. doi: 10.1021/am506937shttp://dx.doi.org/10.1021/am506937s
NODA M, KOBAYASHI N, KATSUHARA M, et al. An OTFT-driven rollable OLED display [J]. J. Soc. Inf. Disp., 2011, 19(4): 316-322. doi: 10.1889/jsid19.4.316http://dx.doi.org/10.1889/jsid19.4.316
GOMES A, PRIYADARSHANA L L, VISSER A, et al. Magicscroll: a rollable display device with flexible screen real estate and gestural input [C]. 20th International Conference on Human⁃computer Interaction with Mobile Devices and Services (MobileHCI), Barcelona, 2018: 6-1-11. doi: 10.1145/3229434.3229442http://dx.doi.org/10.1145/3229434.3229442
PANG H Q, RAJAN K, SILVERNAIL J, et al. Recent progress of flexible AMOLED displays [C]. Proceedings of SPIE 7956, Advances in Display Technologies and E⁃papers and Flexible Displays, San Francisco, 2011: 79560J-1-10. doi: 10.1117/12.880144http://dx.doi.org/10.1117/12.880144
JEONG E G, KWON J H, KANG K S, et al. A review of highly reliable flexible encapsulation technologies towards rollable and foldable OLEDs [J]. J. Inf. Disp., 2020, 21(1): 19-32. doi: 10.1080/15980316.2019.1688694http://dx.doi.org/10.1080/15980316.2019.1688694
GUO J D, DIAO Z H, YAN S F, et al. Immersive autostereoscopic display based on curved screen and parallax barrier [J]. Chin. Opt. Lett., 2021, 19(1): 013301-1-5. doi: 10.3788/col202119.013301http://dx.doi.org/10.3788/col202119.013301
KOLB A, LAMBERS M, TODT S, et al. Immersive rear projection on curved screens [C]. 2009 IEEE Virtual Reality Conference, Lafayette, 2009: 285-286. doi: 10.1109/vr.2009.4811057http://dx.doi.org/10.1109/vr.2009.4811057
LIU J, LI H C, ZHAO L, et al. A method of view-dependent stereoscopic projection on curved screen [C]. 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Reutlingen, 2018: 623-624. doi: 10.1109/vr.2018.8446222http://dx.doi.org/10.1109/vr.2018.8446222
LEE C C, HO J C, CHEN G, et al. 18.1: Invited Paper: flexibility improvement of foldable AMOLED with touch panel [J]. SID Symp. Dig. Tech. Pap., 2015, 46(1): 238-241. doi: 10.1002/sdtp.10445http://dx.doi.org/10.1002/sdtp.10445
DENG G, QIAO Y C, DENG N Q, et al. A flexible electroencephalography electronic skin based on graphene [C]. 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Chengdu, 2021: 1-3. doi: 10.1109/edtm50988.2021.9420850http://dx.doi.org/10.1109/edtm50988.2021.9420850
MAO Q, LI G Z, ZHU R. Electronic skin for detections of human-robot collision force and contact position [C]. 2021 21st International Conference on Solid⁃state Sensors, Actuators and Microsystems (Transducers), Orlando, 2021: 325-328. doi: 10.1109/transducers50396.2021.9495708http://dx.doi.org/10.1109/transducers50396.2021.9495708
MENG X, LÜ X Z, SHI Y G, et al. Pressure-controlled thermochromic electronic skin with adjustable memory time during fabrication for in situ pressure display application [J]. IEEE Trans. Instrum. Meas., 2022, 71: 9507809-1-9. doi: 10.1109/tim.2022.3186049http://dx.doi.org/10.1109/tim.2022.3186049
OMODANI M. 10.1: Invited paper: what is electronic paper? The expectations [J]. SID Symp. Dig. Tech. Pap., 2004, 35(1): 128-131. doi: 10.1889/1.1825751http://dx.doi.org/10.1889/1.1825751
KAPPAUN S, SLUGOVC C, LIST E J W. Phosphorescent organic light-emitting devices: working principle and iridium based emitter materials [J]. Int. J. Mol. Sci., 2008, 9(8): 1527-1547. doi: 10.3390/ijms9081527http://dx.doi.org/10.3390/ijms9081527
SUH S, YI K, CHOI C, et al. Mobile LCD device with transparent infrared image sensor panel for touch and hover sensing [C]. 2012 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, 2012: 213-214. doi: 10.1109/icce.2012.6161834http://dx.doi.org/10.1109/icce.2012.6161834
KIM D S, KO Y J, PARK S M, et al. Stereoscopic display technologies for FHD 3D LCD TV [C]. Proceedings of SPIE 7690, Three⁃Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics Ⅳ, Orlando, 2010: 769008-1-8. doi: 10.1117/12.850656http://dx.doi.org/10.1117/12.850656
TAKASUGI S, SHIN H J, CHANG M K, et al. Advanced compensation technologies for large-sized UHD OLED TVs [J]. J. Soc. Inf. Disp., 2016, 24(7): 410-418. doi: 10.1002/jsid.442http://dx.doi.org/10.1002/jsid.442
HAN C W, PARK J S, CHOI H S, et al. Advanced technologies for UHD curved OLED TV [J]. J. Soc. Inf. Disp., 2014, 22(11): 552-563. doi: 10.1002/jsid.287http://dx.doi.org/10.1002/jsid.287
CHANG Y L, LU Z H. White organic light-emitting diodes for solid-state lighting [J]. J. Disp. Technol., 2013, 9(6): 459-468. doi: 10.1109/jdt.2013.2248698http://dx.doi.org/10.1109/jdt.2013.2248698
YAN X J, TIAN C Y, JIANG W, et al. A scalable seamless full color PMOLED [J]. J. Soc. Inf. Disp., 2014, 22(5): 245-250. doi: 10.1002/jsid.244http://dx.doi.org/10.1002/jsid.244
XUE Y, HAN B X, CHAW G, et al. Uniformity research of an advanced 31-inch 4K AMOLED display [C]. IEEE International Conference on Electron Devices and Solid⁃state Circuits (EDSSC), Xi'an, 2019: 1-2. doi: 10.1109/edssc.2019.8754326http://dx.doi.org/10.1109/edssc.2019.8754326
HONG J H, SHIN J M, KIM G M, et al. 9.1-inch stretchable AMOLED display based on LTPS technology [J]. J. Soc. Inf. Disp., 2017, 25(3): 194-199. doi: 10.1002/jsid.547http://dx.doi.org/10.1002/jsid.547
STEUDEL S, MYNY K, SCHOLS S, et al. Design and realization of a flexible QQVGA AMOLED display with organic TFTs [J]. Org. Electron., 2012, 13(9): 1729-1735. doi: 10.1016/j.orgel.2012.05.034http://dx.doi.org/10.1016/j.orgel.2012.05.034
LIU Y F, FENG J, BI Y G, et al. Recent developments in flexible organic light-emitting devices [J]. Adv. Mater. Technol., 2019, 4(1): 1800371-1-19. doi: 10.1002/admt.201800371http://dx.doi.org/10.1002/admt.201800371
ZHANG Y D, MILLER D C, BERTRAND J A, et al. 12.3: Defect visualization of atomic layer deposition enabled polymer barriers using fluorescent tags [J]. SID Symp. Dig. Tech. Pap., 2008, 39(1): 143-146. doi: 10.1889/1.3069422http://dx.doi.org/10.1889/1.3069422
PARK E K, KIM S, HEO J, et al. Electrical evaluation of crack generation in SiNx and SiOxNy thin-film encapsulation layers for OLED displays [J]. Appl. Surf. Sci., 2016, 370: 126-130. doi: 10.1016/j.apsusc.2016.02.142http://dx.doi.org/10.1016/j.apsusc.2016.02.142
CHEN Z, COTTERELL B, WANG W. The fracture of brittle thin films on compliant substrates in flexible displays [J]. Eng. Fract. Mech., 2002, 69(5): 597-603. doi: 10.1016/s0013-7944(01)00104-7http://dx.doi.org/10.1016/s0013-7944(01)00104-7
PARK Y T, KIM S, HAM S B, et al. Folding-stability criteria of thin-film encapsulation layers for foldable organic light-emitting diodes [J]. Thin Solid Films, 2020, 710: 138277-1-10. doi: 10.1016/j.tsf.2020.138277http://dx.doi.org/10.1016/j.tsf.2020.138277
VAN DER SLUIS O, ABDALLAH A A, BOUTEN P C P, et al. Effect of a hard coat layer on buckle delamination of thin ITO layers on a compliant elasto-plastic substrate: an experimental⁃numerical approach [J]. Eng. Fract. Mech., 2011, 78(6): 877-889. doi: 10.1016/j.engfracmech.2011.01.013http://dx.doi.org/10.1016/j.engfracmech.2011.01.013
LEE C C, TSAI C C, CHUANG J C, et al. Adhesion investigation of stacked coatings in organic light-emitting diode display architecture [J]. Surf. Coat. Technol., 2016, 303: 226-231. doi: 10.1016/j.surfcoat.2016.03.041http://dx.doi.org/10.1016/j.surfcoat.2016.03.041
AUCH M D J, SOO O K, EWALD G, et al. Ultrathin glass for flexible OLED application [J]. Thin Solid Films, 2002, 417(1-2): 47-50. doi: 10.1016/s0040-6090(02)00647-8http://dx.doi.org/10.1016/s0040-6090(02)00647-8
SCHWAMB P, REUSCH T C, BRABEC C J. Flexible top-emitting OLEDs for lighting: bending limits [C]. Proceedings of SPIE 8829, Organic Light Emitting Materials and Devices ⅩⅦ, San Diego, 2013: 88291E-1-10. doi: 10.1117/12.2025011http://dx.doi.org/10.1117/12.2025011
NEMATOLLAHISARVESTANI A, LEE Y C. A review on United States patents to prevent mechanical failures in foldable smartphones [J]. J. Electron. Packag., 2021, 143(2): 020802-1-16. doi: 10.1115/1.4048011http://dx.doi.org/10.1115/1.4048011
彭炎荣, 段继承, 李兆飞, 等. 宽板弯曲过程中板厚的变化规律 [J]. 模具技术, 2003, (1): 10-12. doi: 10.3969/j.issn.1001-4934.2003.01.003http://dx.doi.org/10.3969/j.issn.1001-4934.2003.01.003
PENG Y R, DUAN J C, LI Z F, et al. Variation of wide sheet thickness in bending [J]. Die Mould Technol., 2003, (1): 10-12. (in Chinese). doi: 10.3969/j.issn.1001-4934.2003.01.003http://dx.doi.org/10.3969/j.issn.1001-4934.2003.01.003
WALLS R, VILJOEN C, DE CLERCQ H. A nonlinear, beam finite element with variable, eccentric neutral axis [J]. Eng. Struct., 2019, 187: 341-351. doi: 10.1016/j.engstruct.2019.02.056http://dx.doi.org/10.1016/j.engstruct.2019.02.056
LEE C C, SHIH Y S, WU C S, et al. Development of robust flexible OLED encapsulations using simulated estimations and experimental validations [J]. J. Phys. D: Appl. Phys., 2012, 45(27): 275102-1-8. doi: 10.1088/0022-3727/45/27/275102http://dx.doi.org/10.1088/0022-3727/45/27/275102
SUO Z, MA E Y, GLESKOVA H, et al. Mechanics of rollable and foldable film-on-foil electronics [J]. Appl. Phys. Lett., 1999, 74(8): 1177-1179. doi: 10.1063/1.123478http://dx.doi.org/10.1063/1.123478
LEE C C, LIOU Y Y. Dependent analyses of multilayered material/geometrical characteristics on the mechanical reliability of flexible display devices [J]. IEEE Trans. Device Mater. Reliab., 2018, 18(4): 639-642. doi: 10.1109/TDMR.2018.2878485http://dx.doi.org/10.1109/TDMR.2018.2878485
王春印, 刘红军. 复合体受弯构件中性层位置的确定方法 [J]. 陕西广播电视大学学报, 2000, 2(4): 90-92.
WANG C Y, LIU H J. The method for determining the position of neutral layer in complex flexural member [J]. Shaanxi Rtvu J., 2000, 2(4): 90-92. (in Chinese)
CHOI G C, KIM D E, PARK J W, et al. Efficiency improvement of OLED by aquaregia and RCA treatment of ITO substrate [J]. Mol. Cryst. Liq. Cryst., 2009, 504(1): 35-43. doi: 10.1080/15421400902939041http://dx.doi.org/10.1080/15421400902939041
KATAM N K, SINGH C, RAWAT M, et al. Effect of chemical treatments on ITO and OLED device [J]. Adv. Mater. Res., 2013, 849: 387-390. doi: 10.4028/www.scientific.net/amr.849.387http://dx.doi.org/10.4028/www.scientific.net/amr.849.387
PARK T, HA J, KIM D. Laser processing of indium tin oxide thin film to enhance electrical conductivity and flexibility [J]. Thin Solid Films, 2018, 658: 38-45. doi: 10.1016/j.tsf.2018.05.031http://dx.doi.org/10.1016/j.tsf.2018.05.031
NIU Y F, LIU S F, CHIOU J Y, et al. Improving the flexibility of AMOLED display through modulating thickness of layer stack structure [J]. J. Soc. Inf. Disp., 2016, 24(5): 293-298. doi: 10.1002/jsid.443http://dx.doi.org/10.1002/jsid.443
CHUNG S M, HWANG C S, LEE J I, et al. Enhancement of a top emission organic light-emitting diode with a double buffer layer [J]. Synth. Met., 2008, 158(14): 561-564. doi: 10.1016/j.synthmet.2008.03.029http://dx.doi.org/10.1016/j.synthmet.2008.03.029
仲飞, 叶勤, 刘彭义, 等. ZnS作为空穴缓冲层的新型有机发光二极管 [J]. 发光学报, 2006, 27(6): 877-881. doi: 10.3321/j.issn:1000-7032.2006.06.007http://dx.doi.org/10.3321/j.issn:1000-7032.2006.06.007
ZHONG F, YE Q, LIU P Y, et al. Organic light-emitting diodes with nano-ZnS thin films as hole buffer layer by RF magnetron sputtering [J]. Chin. J. Lumin., 2006, 27(6): 877-881. (in Chinese). doi: 10.3321/j.issn:1000-7032.2006.06.007http://dx.doi.org/10.3321/j.issn:1000-7032.2006.06.007
DENG Z B, DING X M, LEE S T, et al. Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers [J]. Appl. Phys. Lett., 1999, 74(15): 2227-2229. doi: 10.1063/1.123809http://dx.doi.org/10.1063/1.123809
苏展, 于涛. 不同缓冲层对OLEDs的影响 [J]. 现代显示, 2005(12): 48-51. doi: 10.3969/j.issn.1006-6268.2005.12.010http://dx.doi.org/10.3969/j.issn.1006-6268.2005.12.010
SU Z, YU T. The different buffer layers having different effects on the OLEDs [J]. Adv. Disp., 2005(12): 48-51. (in Chinese). doi: 10.3969/j.issn.1006-6268.2005.12.010http://dx.doi.org/10.3969/j.issn.1006-6268.2005.12.010
CHIANG C J, WINSCOM C, BULL S, et al. Mechanical modeling of flexible OLED devices [J]. Org. Electron., 2009, 10(7): 1268-1274. doi: 10.1016/j.orgel.2009.07.003http://dx.doi.org/10.1016/j.orgel.2009.07.003
LEE S, KWON J Y, YOON D, et al. Bendability optimization of flexible optical nanoelectronics via neutral axis engineering [J]. Nanoscale Res. Lett., 2012, 7(1): 256-1-7. doi: 10.1186/1556-276x-7-256http://dx.doi.org/10.1186/1556-276x-7-256
LEE C C. Modeling and validation of mechanical stress in indium tin oxide layer integrated in highly flexible stacked thin films [J]. Thin Solid Films, 2013, 544: 443-447. doi: 10.1016/j.tsf.2013.02.084http://dx.doi.org/10.1016/j.tsf.2013.02.084
HAN Y C, JEONG E G, KIM H, et al. Reliable thin-film encapsulation of flexible OLEDs and enhancing their bending characteristics through mechanical analysis [J]. RSC Adv., 2016, 6(47): 40835-40843. doi: 10.1039/c6ra06571fhttp://dx.doi.org/10.1039/c6ra06571f
PARK S K, HAN J I, MOON D G, et al. Mechanical stability of externally deformed indium-tin-oxide films on polymer substrates [J]. Jpn. J. Appl. Phys., 2003, 42(2R): 623-629. doi: 10.1143/jjap.42.623http://dx.doi.org/10.1143/jjap.42.623
LIN L, LI Y L, HU K, et al. 68-1: Invited paper: reliability and failure mode analysis of foldable AMOLED display module [J]. SID Symp. Dig. Tech. Pap., 2018, 49(1): 899-901. doi: 10.1002/sdtp.12250http://dx.doi.org/10.1002/sdtp.12250
CAMPBELL C J, CLAPPER J, BEHLING R E, et al. P-198: Optically clear adhesives enabling foldable and flexible OLED displays [J]. SID Symp. Dig. Tech. Pap., 2017, 48(1): 2009-2011. doi: 10.1002/sdtp.12071http://dx.doi.org/10.1002/sdtp.12071
NAM J, LEE S, HAN M J, et al. Improved stack structure of rollable display to prevent delamination and permanent deformation [J]. Int. J. Precis. Eng. Manuf., 2021, 22(4): 671-678. doi: 10.1007/s12541-021-00481-6http://dx.doi.org/10.1007/s12541-021-00481-6
WANG W Q, JIA Y Z, LI H Q, et al. Mechanical simulation of foldable organic light-emitting diode display supporting layer [J]. J. Soc. Inf. Disp., 2021, 29(9): 723-730. doi: 10.1002/jsid.1028http://dx.doi.org/10.1002/jsid.1028
SHI S M, LI Z, DONG L M, et al. 18.3: Invited paper: research on 7.56-inch foldable AMOLED and relevant foldable technologies [J]. SID Symp. Dig. Tech. Pap., 2019, 50(S1): 184-186. doi: 10.1002/sdtp.13433http://dx.doi.org/10.1002/sdtp.13433
NISHIMURA M, TAKEBAYASHI K, HISHINUMA M, et al. A 5.5-inch full HD foldable AMOLED display based on neutral-plane splitting concept [J]. J. Soc. Inf. Disp., 2019, 27(8): 480-486.
KIM W, LEE I, KIM D Y, et al. Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics [J]. Nanotechnology, 2017, 28(19): 194002-1-9. doi: 10.1088/1361-6528/aa6a44http://dx.doi.org/10.1088/1361-6528/aa6a44
KIM T, CHOI J, CHOI D, et al. 68-1: Extremely robust rollable AMOLED display [J]. SID Symp. Dig. Tech. Pap., 2021, 52(1): 1014-1017. doi: 10.1002/sdtp.14862http://dx.doi.org/10.1002/sdtp.14862
KUSAMA K, MATANO T, OHASHI Y, et al. P-72: Is the photo-elasticity of PSAs for LCD panels reducible? [J]. SID Symp. Dig. Tech. Pap., 2008, 39(1): 1457-1460. doi: 10.1889/1.3069427http://dx.doi.org/10.1889/1.3069427
NISHIMURA M, HISHINUMA M, YAMAGUCHI H, et al. 56-3: Quantitative evaluation of neutral-plane splitting in foldable displays using folding stiffness measurements and finite element method simulations [J]. SID Symp. Dig. Tech. Pap., 2020, 51(1): 834-837. doi: 10.1002/sdtp.13999http://dx.doi.org/10.1002/sdtp.13999
FENG Q B, SU K, DU G, et al. P-55: Analysis of bonding optically clear adhesive in dual-cell LCD [J]. SID Symp. Dig. Tech. Pap., 2021, 52(1): 1275-1278. doi: 10.1002/sdtp.14933http://dx.doi.org/10.1002/sdtp.14933
ZHAO J, CHEN X Y, SUN L Y, et al. Simulation and analysis of liquid crystal module drop impact based on ANSYS [J]. SID Symp. Dig. Tech. Pap., 2020, 51(S1): 157-160. doi: 10.1002/sdtp.13778http://dx.doi.org/10.1002/sdtp.13778
ASGARI M, KOUCHAKZADEH M A. An equivalent von Mises stress and corresponding equivalent plastic strain for elastic-plastic ordinary peridynamics [J]. Meccanica, 2019, 54(7): 1001-1014. doi: 10.1007/s11012-019-00975-8http://dx.doi.org/10.1007/s11012-019-00975-8
JANSSON N E, LETERRIER Y, MÅNSON J A E. Modeling of multiple cracking and decohesion of a thin film on a polymer substrate [J]. Eng. Fract. Mech., 2006, 73(17): 2614-2626. doi: 10.1016/j.engfracmech.2006.04.013http://dx.doi.org/10.1016/j.engfracmech.2006.04.013
HELALI H T, GRAFINGER M. The precision of FEM simulation results compared with theoretical composite layup calculation [J]. Compos. Part B: Eng., 2016, 95: 282-292. doi: 10.1016/j.compositesb.2016.04.003http://dx.doi.org/10.1016/j.compositesb.2016.04.003
刘正周, 廖敦明, 贾永臻, 等. 可折叠OLED屏幕的弯折应力仿真 [J]. 液晶与显示, 2018, 33(7): 555-560. doi: 10.3788/yjyxs20183307.0555http://dx.doi.org/10.3788/yjyxs20183307.0555
LIU Z Z, LIAO D M, JIA Y Z, et al. Stress simulation of foldable OLED screen bending [J]. Chin. J. Liq. Cryst. Disp., 2018, 33(7): 555-560. (in Chinese). doi: 10.3788/yjyxs20183307.0555http://dx.doi.org/10.3788/yjyxs20183307.0555
伍海华, 刘娟. 柔性屏滑卷过程力学行为数值研究 [J]. 液晶与显示, 2022, 37(11): 1446-1452. doi: 10.37188/CJLCD.2022-0191http://dx.doi.org/10.37188/CJLCD.2022-0191
WU H H, LIU J. Numerical research on mechanical properties of flexible screen in sliding process [J]. Chin. J. Liq. Cryst. Disp., 2022, 37(11): 1446-1452. (in Chinese). doi: 10.37188/CJLCD.2022-0191http://dx.doi.org/10.37188/CJLCD.2022-0191
KIM Y G, PARK B M, CHOI J K, et al. Optimization of the rework of bended OLED displays by surface-energy control [J]. Coatings, 2021, 11(12): 1523-1-18. doi: 10.3390/coatings11121523http://dx.doi.org/10.3390/coatings11121523
WANG M, CHEN D B, FENG W, et al. Synthesis and characterization of optically clear pressure-sensitive adhesive [J]. Mater. Trans., 2015, 56(6): 895-898. doi: 10.2320/matertrans.m2014425http://dx.doi.org/10.2320/matertrans.m2014425
WU D, LIAO D M, SHI J K, et al. Structural optimization method of foldable active-matrix organic light-emitting diode panel based on mechanical theory [J]. J. Soc. Inf. Disp., 2021, 29(12): 923-929. doi: 10.1002/jsid.1015http://dx.doi.org/10.1002/jsid.1015
ABRAHAMSON J T, YEH C H J, HEDEGAARD A T, et al. 69-3: Non-linear mechanics of adhesives for robust flexible displays [J]. SID Symp. Dig. Tech. Pap., 2021, 52(1): 1036-1039. doi: 10.1002/sdtp.14868http://dx.doi.org/10.1002/sdtp.14868
SALMON F, EVERAERTS A, CAMPBELL C, et al. 64-1: Modeling the mechanical performance of a foldable display panel bonded by 3M optically clear adhesives [J]. SID Symp. Dig. Tech. Pap., 2017, 48(1): 938-941. doi: 10.1002/sdtp.11796http://dx.doi.org/10.1002/sdtp.11796
HUANG H, DASGUPTA A, MIRBAGHERI E, et al. Uniaxial creep response of double-layered pressure sensitive adhesive (PSA) [C]. 18th IEEE InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, 2019: 290-294. doi: 10.1109/itherm.2019.8757417http://dx.doi.org/10.1109/itherm.2019.8757417
CHENG A, CHEN Y Y, JIN J, et al. 74-3: Study on mechanical behavior and effect of adhesive layers in foldable AMOLED display by finite element analysis [J]. SID Symp. Dig. Tech. Pap., 2019, 50(1): 1060-1063. doi: 10.1002/sdtp.13110http://dx.doi.org/10.1002/sdtp.13110
0
浏览量
1267
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构