浏览全部资源
扫码关注微信
1.华南理工大学 材料科学与工程学院, 发光材料与器件国家重点实验室, 广东 广州 510641
2.华南理工大学 物理与光电学院, 广东 广州 510641
[ "尹博钊(1998-),男,陕西咸阳人,博士研究生,2020年于华南理工大学获得学士学位,主要从事钙钛矿量子点玻璃方面的研究。E-mail: yinbzh@126. com" ]
[ "董国平(1983-),男,江苏常州人,博士,教授,博士生导师,2010年于中国科学院上海光学精密机械研究所获得博士学位,主要从事光学玻璃与光纤器件的研究。" ]
纸质出版日期:2023-03-05,
收稿日期:2022-09-24,
修回日期:2022-10-15,
扫 描 看 全 文
尹博钊,黄雄健,董国平.离子掺杂钙钛矿量子点玻璃研究进展[J].发光学报,2023,44(03):437-448.
YIN Bozhao,HUANG Xiongjian,DONG Guoping.Research Progress of Ion-doped Perovskite Quantum Dot-embedded Glass[J].Chinese Journal of Luminescence,2023,44(03):437-448.
尹博钊,黄雄健,董国平.离子掺杂钙钛矿量子点玻璃研究进展[J].发光学报,2023,44(03):437-448. DOI: 10.37188/CJL.20220347.
YIN Bozhao,HUANG Xiongjian,DONG Guoping.Research Progress of Ion-doped Perovskite Quantum Dot-embedded Glass[J].Chinese Journal of Luminescence,2023,44(03):437-448. DOI: 10.37188/CJL.20220347.
近年来,全无机钙钛矿量子点因其优异的光电性能受到研究者的广泛关注,但其较差的稳定性极大地限制了其应用。利用玻璃优异的稳定性,控制钙钛矿量子点在玻璃中原位析出,使玻璃包覆在钙钛矿量子点周围,隔绝其与外界环境的接触,有效地提高了其稳定性。通过在钙钛矿量子点玻璃中掺杂特定的离子可以调控钙钛矿量子点的析晶情况和发光峰位,并可引入新的发光中心。本文根据掺杂离子的目的,综合介绍了离子掺杂钙钛矿量子点玻璃的研究进展,为近期关于离子掺杂钙钛矿量子点玻璃的研究提供了思路和参考。
In recent years, all-inorganic perovskite quantum dots (QDs) have attracted extensive attention from researchers due to their excellent photoelectric properties, but their poor stability greatly limits their applications. By using the stability of glass, the perovskite QDs are controlled to
in-situ
growth inside the glass matrix, so that the glass coats around the perovskite QDs. And the contact between QDs and the external environment is cut off, thus effectively improving the stability of QDs. By doping specific ions in perovskite QD-embedded glass, the crystallization of QDs and their luminescence peak can be controlled. Besides that, a new luminescence center can be introduced. In this paper, the research progress of ion-doped perovskite QD-embedded glass is comprehensively introduced according to the purposes of ion doping, which provides ideas and references for the recent research on ion-doped perovskite QD-embedded glass.
玻璃钙钛矿量子点离子掺杂
glassperovskite quantum dotsion doping
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779http://dx.doi.org/10.1021/nl5048779
AKKERMAN Q A, D’INNOCENZO V, ACCORNERO S, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions [J]. J. Am. Chem. Soc., 2015, 137(32): 10276-10281. doi: 10.1021/jacs.5b05602http://dx.doi.org/10.1021/jacs.5b05602
ZHANG F, ZHONG H Z, CHEN C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology [J]. ACS Nano, 2015, 9(4): 4533-4542. doi: 10.1021/acsnano.5b01154http://dx.doi.org/10.1021/acsnano.5b01154
SONG J Z, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3) [J]. Adv. Mater., 2015, 27(44): 7162-7167. doi: 10.1002/adma.201502567http://dx.doi.org/10.1002/adma.201502567
LI G R, RIVAROLA F W R, DAVIS N J L K, et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method [J]. Adv. Mater., 2016, 28(18): 3528-3534. doi: 10.1002/adma.201600064http://dx.doi.org/10.1002/adma.201600064
CHIBA T, HOSHI K, PU Y J, et al. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment [J]. ACS Appl. Mater. Interfaces, 2017, 9(21): 18054-18060. doi: 10.1021/acsami.7b03382http://dx.doi.org/10.1021/acsami.7b03382
LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent [J]. Nature, 2018, 562(7726): 245-248. doi: 10.1038/s41586-018-0575-3http://dx.doi.org/10.1038/s41586-018-0575-3
SWARNKAR A, MARSHALL A R, SANEHIRA E M, et al. Quantum dot-induced phase stabilization of (-CsPbI3 perovskite for high-efficiency photovoltaics [J]. Science, 2016, 354(6308): 92-95. doi: 10.1126/science.aag2700http://dx.doi.org/10.1126/science.aag2700
ZHANG T Y, DAR M I, LI G, et al. Bication lead iodide 2D perovskite component to stabilize inorganic (-CsPbI3 perovskite phase for high-efficiency solar cells [J]. Sci. Adv., 2017, 3(9): e1700841-1-6. doi: 10.1126/sciadv.1700841http://dx.doi.org/10.1126/sciadv.1700841
RAMASAMY P, LIM D H, KIM B, et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications [J]. Chem. Commun., 2016, 52(10): 2067-2070. doi: 10.1039/c5cc08643dhttp://dx.doi.org/10.1039/c5cc08643d
LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes [J]. Adv. Funct. Mater., 2016, 26(15): 2435-2445. doi: 10.1002/adfm.201600109http://dx.doi.org/10.1002/adfm.201600109
LI F, LIU Y, WANG H L, et al. Postsynthetic surface trap removal of CsPbX3(X = Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield [J]. Chem. Mater., 2018, 30(23): 8546-8554. doi: 10.1021/acs.chemmater.8b03442http://dx.doi.org/10.1021/acs.chemmater.8b03442
MONDAL N, DE A, SAMANTA A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals [J]. ACS Energy Lett., 2019, 4(1): 32-39. doi: 10.1021/acsenergylett.8b01909http://dx.doi.org/10.1021/acsenergylett.8b01909
ZOU S H, LIU Y S, LI J H, et al. Stabilizing cesium lead halide perovskite lattice through Mn(Ⅱ) substitution for air-stable light-emitting diodes [J]. J. Am. Chem. Soc., 2017, 139(33): 11443-11450. doi: 10.1021/jacs.7b04000http://dx.doi.org/10.1021/jacs.7b04000
LIU W Y, LIN Q L, LI H B, et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content [J]. J. Am. Chem. Soc., 2016, 138(45): 14954-14961. doi: 10.1021/jacs.6b08085http://dx.doi.org/10.1021/jacs.6b08085
PAN G C, BAI X, YANG D W, et al. Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties [J]. Nano Lett., 2017, 17(12): 8005-8011. doi: 10.1021/acs.nanolett.7b04575http://dx.doi.org/10.1021/acs.nanolett.7b04575
ZHOU D L, LIU D L, PAN G C, et al. Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells [J]. Adv. Mater., 2017, 29(42): 1704149-1-6. doi: 10.1002/adma.201704149http://dx.doi.org/10.1002/adma.201704149
ZHANG X Y, BAI X, WU H, et al. Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals [J]. Angew. Chem. Int. Ed., 2018, 57(13): 3337-3342. doi: 10.1002/anie.201710869http://dx.doi.org/10.1002/anie.201710869
MALGRAS V, HENZIE J, TAKEI T, et al. Stable blue luminescent CsPbBr3 perovskite nanocrystals confined in mesoporous thin films [J]. Angew. Chem. Int. Ed., 2018, 57(29): 8881-8885. doi: 10.1002/anie.201802335http://dx.doi.org/10.1002/anie.201802335
ZHANG Q G, WANG B, ZHENG W L, et al. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates [J]. Nat. Commum., 2020, 11(1): 31-1-9. doi: 10.1038/s41467-019-13881-0http://dx.doi.org/10.1038/s41467-019-13881-0
ZHANG C Y, LI W B, LI L. Metal halide perovskite nanocrystals in metal⁃organic framework host: not merely enhanced stability [J]. Angew. Chem. Int. Ed., 2021, 60(14): 7488-7501. doi: 10.1002/anie.202006169http://dx.doi.org/10.1002/anie.202006169
LUO P L, HUANG P, WANG J C, et al. Controllable synthesis of glass ceramics containing YF3∶Eu3+ nanocrystals: well-preserved Eu and prolonged lifetime [J]. J. Am. Ceram. Soc. 2020, 103(5): 3089-3096. doi: 10.1111/jace.17021http://dx.doi.org/10.1111/jace.17021
DIRIN D N, BENIN B M, YAKUNIN S, et al. Microcarrier-assisted inorganic shelling of lead halide perovskite nanocrystals [J]. ACS Nano, 2019, 13(10): 11642-11652. doi: 10.1021/acsnano.9b05481http://dx.doi.org/10.1021/acsnano.9b05481
AI B, LIU C, WANG J, et al. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses [J]. J. Am. Ceram. Soc., 2016, 99(9): 2875-2877. doi: 10.1111/jace.14400http://dx.doi.org/10.1111/jace.14400
林继栋, 王志斌, 张瑞丹, 等. CsPbX3(X = Cl, Br, I)钙钛矿量子点玻璃制备及其应用研究进展 [J]. 发光学报, 2021, 42(9): 1331-1344. doi: 10.37188/cjl.20210183http://dx.doi.org/10.37188/cjl.20210183
LIN J D, WANG Z B, ZHANG R D, et al. Research progresses in preparation and applications of CsPbX3(X = Cl, Br, I) perovskite quantum dots-embedded glass [J]. Chin. J. Lumin., 2021, 42(9): 1331-1344. (in Chinese). doi: 10.37188/cjl.20210183http://dx.doi.org/10.37188/cjl.20210183
YUAN S, CHEN D Q, LI X Y, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing [J]. ACS Appl. Mater. Interfaces, 2018, 10(22): 18918-18926. doi: 10.1021/acsami.8b05155http://dx.doi.org/10.1021/acsami.8b05155
YUAN R R, CHENG Y Z, LIU S N, et al. Multicolour light-emitting diodes based on CsPbX3 (X=Br, I) quantum dots glasses solid materials [J]. Mater. Lett., 2018, 229: 290-292. doi: 10.1016/j.matlet.2018.07.041http://dx.doi.org/10.1016/j.matlet.2018.07.041
JIANG J T, SHAO G Z, ZHANG Z L, et al. Ultrastability and color-tunability of CsPb(Br/I)3 nanocrystals in P⁃Si⁃Zn glass for white LEDs [J]. Chem. Commun., 2018, 54(87): 12302-12305. doi: 10.1039/c8cc06442chttp://dx.doi.org/10.1039/c8cc06442c
PANG X L, SI S C, XIE L Q, et al. Regulating the morphology and luminescence properties of CsPbBr3 perovskite quantum dots through the rigidity of glass network structure [J]. J. Mater. Chem. C, 2020, 8(48): 17374-17382. doi: 10.1039/d0tc04498ahttp://dx.doi.org/10.1039/d0tc04498a
HUANG X J, GUO Q Y, YANG D D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium [J]. Nat. Photonics, 2020, 14(2): 82-88. doi: 10.1038/s41566-019-0538-8http://dx.doi.org/10.1038/s41566-019-0538-8
SUN K, TAN D Z, FANG X Y, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass [J]. Science, 2022, 375(6578): 307-310. doi: 10.1126/science.abj2691http://dx.doi.org/10.1126/science.abj2691
XIANG X Q, LIN H, LI R F, et al. Stress-induced CsPbBr3 nanocrystallization on glass surface: unexpected mechanoluminescence and applications [J]. Nano Res., 2019, 12(5): 1049-1054. doi: 10.1007/s12274-019-2338-3http://dx.doi.org/10.1007/s12274-019-2338-3
WANG Y J, ZHANG R L, YUE Y, et al. Room temperature synthesis of CsPbX3(X= Cl, Br, I) perovskite quantum dots by water-induced surface crystallization of glass [J]. J. Alloys Compd., 2020, 818: 152872-1-6. doi: 10.1016/j.jallcom.2019.152872http://dx.doi.org/10.1016/j.jallcom.2019.152872
ZHU Y X, YANG B B, LU Q, et al. Stable Dy-doped CsPbBr3 quantum dot glass with enhanced optical performance [J]. J. Non⁃Cryst. Solids, 2022, 575: 121224-1-8. doi: 10.1016/j.jnoncrysol.2021.121224http://dx.doi.org/10.1016/j.jnoncrysol.2021.121224
SHAO G Z, LIU S N, DING L, et al. KxCs1-xPbBr3 NCs glasses possessing super optical properties and stability for white light emitting diodes [J]. Chem. Eng. J., 2019, 375: 122031-1-8. doi: 10.1016/j.cej.2019.122031http://dx.doi.org/10.1016/j.cej.2019.122031
LIU J M, LIU S N, CHEN Y, et al. Sm3+-doped CsPbBr3 NCs glass: a luminescent material for potential use in lighting engineering [J]. Ceram. Int., 2019, 45(17): 22688-22693. doi: 10.1016/j.ceramint.2019.07.304http://dx.doi.org/10.1016/j.ceramint.2019.07.304
NIU L Y, SHI H Z, YE Y, et al. Optimized tellurite glasses containing CsPbBr3-quantum dots for white-light emitting diodes [J]. J. Non⁃Cryst. Solids, 2022, 581: 121429-1-5. doi: 10.1016/j.jnoncrysol.2022.121429http://dx.doi.org/10.1016/j.jnoncrysol.2022.121429
LIU X D, SHAO G Z, ZHANG Y J, et al. CsPbCl1.5Br1.5 perovskite nanocrystals glasses powder optimized by Zn2+ for photocatalytic hydrogen production [J]. Mol. Catal., 2021, 499: 111305-1-9. doi: 10.1016/j.mcat.2020.111305http://dx.doi.org/10.1016/j.mcat.2020.111305
XU Z S, CHEN T, XIA J Z, et al. Effect of ZnO on the crystallization and photoluminescence of CsPbI3 perovskite quantum dots in borosilicate glasses [J]. J. Am. Ceram. Soc., 2022, 105(5): 3303-3311. doi: 10.1111/jace.18335http://dx.doi.org/10.1111/jace.18335
HE Q Y, ZHANG Y Q, YU Y X, et al. Ultrastable Gd3+ doped CsPbBrI2 nanocrystals red glass for high efficiency WLEDs [J]. Chem. Eng. J., 2021, 411: 128530-1-7. doi: 10.1016/j.cej.2021.128530http://dx.doi.org/10.1016/j.cej.2021.128530
SHEN C Y, ZHAO Y, YUAN L, et al. Transition metal ion doping perovskite nanocrystals for high luminescence quantum yield [J]. Chem. Eng. J, 2020, 382: 122868-1-7. doi: 10.1016/j.cej.2019.122868http://dx.doi.org/10.1016/j.cej.2019.122868
YUAN L, ZHOU L, XIANG W D, et al. Enhanced stability of red-emitting CsPbI3∶Yb3+ nanocrystal glasses: a potential luminescent material [J]. J. Non⁃Cryst. Solids, 2020, 545: 120232-1-7. doi: 10.1016/j.jnoncrysol.2020.120232http://dx.doi.org/10.1016/j.jnoncrysol.2020.120232
TONG Y, WANG Q, YANG H, et al. Enhanced multimodal luminescence and ultrahigh stability Eu3+-doped CsPbBr3 glasses for X-ray detection and imaging [J]. Photonics Res., 2021, 9(12): 2369-2380. doi: 10.1364/prj.439744http://dx.doi.org/10.1364/prj.439744
MA W B, JIANG T M, YANG Z, et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering [J]. Adv. Sci. (Weinh.), 2021, 8(15): 2003728-1-8. doi: 10.1002/advs.202003728http://dx.doi.org/10.1002/advs.202003728
ZHANG H, YANG Z, ZHOU M, et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure [J]. Adv. Mater., 2021, 33(40): 2102529-1-7. doi: 10.1002/adma.202102529http://dx.doi.org/10.1002/adma.202102529
WANG D Z, QIU J B, ZHOU D C, et al. Lithium doping induced self-crystallization of CsPbBr3 nanocrystal glass with improved quantum yield and stability [J]. Chem. Eng. J, 2021, 421: 127777-1-11. doi: 10.1016/j.cej.2020.127777http://dx.doi.org/10.1016/j.cej.2020.127777
CHEN D Q, LIU Y, YANG C B, et al. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3(X = Cl, Br, I) perovskite quantum dots through fluorine doping [J]. Nanoscale, 2019, 11(37): 17216-17221. doi: 10.1039/c9nr07307hhttp://dx.doi.org/10.1039/c9nr07307h
ZHANG H L, YUAN R R, JIN M F F, et al. Rb+-doped CsPbBr3 quantum dots with multi-color stabilized in borosilicate glass via crystallization [J]. J. Eur. Ceram. Soc., 2020, 40(1): 94-102. doi: 10.1016/j.jeurceramsoc.2019.09.020http://dx.doi.org/10.1016/j.jeurceramsoc.2019.09.020
XIE H Y, HAO S Q, BAO J K, et al. All-inorganic halide perovskites as potential thermoelectric materials: dynamic cation off-centering induces ultralow thermal conductivity [J]. J. Am. Chem. Soc., 2020, 142(20): 9553-9563. doi: 10.1021/jacs.0c03427http://dx.doi.org/10.1021/jacs.0c03427
STOUMPOS C C, FRAZER L, CLARK D J, et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties [J]. J. Am. Chem. Soc., 2015, 137(21): 6804-6819. doi: 10.1021/jacs.5b01025http://dx.doi.org/10.1021/jacs.5b01025
ZHAO Y, SHEN C Y, DING L, et al. Novel B-site Cd2+ doped CsPbBr3 quantum dot glass toward strong fluorescence and high stability for wLED [J]. Opt. Mater., 2020, 107: 110046-1-7. doi: 10.1016/j.optmat.2020.110046http://dx.doi.org/10.1016/j.optmat.2020.110046
LIU S N, SHAO G Z, DING L, et al. Sn-doped CsPbBr3 QDs glasses with excellent stability and optical properties for WLED [J]. Chem. Eng. J., 2019, 361: 937-944. doi: 10.1016/j.cej.2018.12.147http://dx.doi.org/10.1016/j.cej.2018.12.147
SHEN L L, ZHANG Z L, ZHAO Y S, et al. Synthesis and optical properties of novel mixed-metal cation CsPb1-xTixBr3-based perovskite glasses for W-LED [J]. J. Am. Ceram. Soc., 2020, 103(1): 382-390. doi: 10.1111/jace.16760http://dx.doi.org/10.1111/jace.16760
ZHANG Z L, SHEN L L, ZHANG H L, et al. Novel red-emitting CsPb1-xTixI3 perovskite QDs@glasses with ambient stability for high efficiency white LEDs and plant growth LEDs [J]. Chem. Eng. J., 2019, 378: 122125-1-7. doi: 10.1016/j.cej.2019.122125http://dx.doi.org/10.1016/j.cej.2019.122125
CHENG Y Z, SHEN C Y, SHEN L L, et al. Tb3+, Eu3+ co-doped CsPbBr3 QDs glass with highly stable and luminous djustable for white LEDs [J]. ACS Appl. Mater. Interfaces, 2018, 10(25): 21434-21444. doi: 10.1021/acsami.8b05003http://dx.doi.org/10.1021/acsami.8b05003
EROL E, KIBRISLI O, ERSUNDU M Ç, et al. Color tunable emission from Eu3+ and Tm3+ co-doped CsPbBr3 quantum dot glass nanocomposites [J]. Phys. Chem. Chem. Phys., 2022, 24(3): 1486-1495.
EROL E, VAHEDIGHAREHCHOPOGH N, EKIM U, et al. Ultra-stable Eu3+/Dy3+ co-doped CsPbBr3 quantum dot glass nanocomposites with tunable luminescence properties for phosphor-free WLED applications [J]. J. Alloys Compd., 2022, 909: 164650-1-8. doi: 10.1016/j.jallcom.2022.164650http://dx.doi.org/10.1016/j.jallcom.2022.164650
LI P P, DUAN Y M, LU Y, et al. Nanocrystalline structure control and tunable luminescence mechanism of Eu-doped CsPbBr3 quantum dot glass for WLEDs [J]. Nanoscale, 2020, 12(12): 6630-6636. doi: 10.1039/d0nr01207fhttp://dx.doi.org/10.1039/d0nr01207f
LI X Y, YU Y L, HONG J Q, et al. Optical temperature sensing of Eu3+-doped oxyhalide glasses containing CsPbBr3 perovskite quantum dots [J]. J. Lumin., 2020, 219: 116897-1-8. doi: 10.1016/j.jlumin.2019.116897http://dx.doi.org/10.1016/j.jlumin.2019.116897
YU Y X, SHAO G Z, DING L, et al. Ultra-stable Eu3+-doped CsPbCl2Br1 perovskite quantum dots glass for optical temperature sensing [J]. J. Rare Earths, 2021, 39(12): 1497-1505. doi: 10.1016/j.jre.2020.11.010http://dx.doi.org/10.1016/j.jre.2020.11.010
WEI K, LI P P, DUAN Y M, et al. Temperature-dependent color-tunable luminescence in CsPbBr3∶Dy3+ glass ceramic [J]. J. Non⁃Cryst. Solids, 2021, 570: 121022-1-7. doi: 10.1016/j.jnoncrysol.2021.121022http://dx.doi.org/10.1016/j.jnoncrysol.2021.121022
YANG Q H, ZHAO L, FANG Z H, et al. Transparent perovskite glass-ceramics for visual optical thermometry [J]. J. Rare Earths, 2021, 39(6): 712-717. doi: 10.1016/j.jre.2020.05.009http://dx.doi.org/10.1016/j.jre.2020.05.009
ZHANG Y Q, LIU J M, ZHANG H L, et al. Ultra-stable Tb3+∶CsPbI3 nanocrystal glasses for wide-range high-sensitivity optical temperature sensing [J]. J. Eur. Ceram. Soc., 2020, 40(15): 6023-6030. doi: 10.1016/j.jeurceramsoc.2020.07.016http://dx.doi.org/10.1016/j.jeurceramsoc.2020.07.016
CAO L Y, SI S C, YU J B, et al. A precisely space-separated strategy of donor-acceptor for intense red emitting composite borosilicate glass co-doped with CsPbCl3 quantum dots and Mn2+ ions [J]. Chem. Eng. J., 2021, 417: 129177-1-8. doi: 10.1016/j.cej.2021.129177http://dx.doi.org/10.1016/j.cej.2021.129177
CHEN Y, SHEN L L, LIU J M, et al. Eco-friendly Mn-doped CsPbCl3 perovskite nanocrystal glass with blue-red emission for indoor plant lighting [J]. J. Am. Ceram. Soc., 2021, 104(6): 2579-2587. doi: 10.1111/jace.17644http://dx.doi.org/10.1111/jace.17644
HE M L, CHENG Y Z, YUAN R R, et al. Mn-doped cesium lead halide perovskite nanocrystals with dual-color emission for WLED [J]. Dyes Pigm., 2018, 152: 146-154. doi: 10.1016/j.dyepig.2018.01.045http://dx.doi.org/10.1016/j.dyepig.2018.01.045
ZHUANG B, LIU Y, YUAN S, et al. Glass stabilized ultra-stable dual-emitting Mn-doped cesium lead halide perovskite quantum dots for cryogenic temperature sensing [J]. Nanoscale, 2019, 11(32): 15010-15016. doi: 10.1039/c9nr05831ahttp://dx.doi.org/10.1039/c9nr05831a
ZHANG H, YANG Z, ZHAO L, et al. Long persistent luminescence from all-inorganic perovskite nanocrystals [J]. Adv. Opt. Mater., 2020, 8(18): 2000585-1-8. doi: 10.1002/adom.202000585http://dx.doi.org/10.1002/adom.202000585
PENG Q P, WANG T, TANG H T, et al. Up-converted long persistent luminescence from CsPbBr3 nanocrystals in glass [J]. Laser Photon. Rev., 2022, 16(12): 2200449-1-7. doi: 10.1002/lpor.202200449http://dx.doi.org/10.1002/lpor.202200449
YANG Z, ZHAO L, LI M X, et al. Perovskite quantum dots growth in situ in transparent medium for short wavelength shielding [J]. J. Am. Ceram. Soc., 2020, 103(8): 4150-4158. doi: 10.1111/jace.17132http://dx.doi.org/10.1111/jace.17132
0
浏览量
308
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构