浏览全部资源
扫码关注微信
1.北京交通大学 物理科学与工程学院, 北京 100044
2.北京理工大学 深圳研究院, 广东 深圳 518507
[ "刘萍(1996-),女,山东烟台人,硕士研究生,2020年于泰山学院获得学士学位,主要从事柔性无镉量子点电致发光器件的研究。E⁃mail: 20121592@bjtu.edu.cn" ]
[ "訚哲(1992-),女,辽宁丹东人,博士,讲师,硕士生导师,2020年于清华大学获得博士学位,主要从事无铅钙钛矿柔性光电材料及器件的制备和性能的研究。E⁃mail: zheyin@bjtu.edu.cn.com" ]
[ "邓振波(1959-),男,山东单县人,博士,教授,博士生导师,1994年于中国科学院长春物理研究所获得博士学位,主要从事光电材料及薄膜电致发光器件的研究。E⁃mail: zbdeng@bjtu.edu.cn" ]
纸质出版日期:2023-04-05,
收稿日期:2022-09-24,
修回日期:2022-10-10,
扫 描 看 全 文
刘萍,李宇,韦闯闯等.界面调控对柔性量子点电致发光器件性能的影响[J].发光学报,2023,44(04):641-656.
LIU Ping,LI Yu,WEI Chuangchuang,et al.Effects of Interface Regulation on Performances of Flexible Quantum Dot Electroluminescent Devices[J].Chinese Journal of Luminescence,2023,44(04):641-656.
刘萍,李宇,韦闯闯等.界面调控对柔性量子点电致发光器件性能的影响[J].发光学报,2023,44(04):641-656. DOI: 10.37188/CJL.20220345.
LIU Ping,LI Yu,WEI Chuangchuang,et al.Effects of Interface Regulation on Performances of Flexible Quantum Dot Electroluminescent Devices[J].Chinese Journal of Luminescence,2023,44(04):641-656. DOI: 10.37188/CJL.20220345.
近年来,柔性显示技术引起了人们的广泛关注,尤其在折叠手机、可穿戴电子等领域,柔性显示屏幕更是不可或缺。量子点发光二极管(Quantum dot light emitting diodes,QLEDs)因具有高色纯度、高效率、高稳定性等特点而在柔性显示领域展现了独特的优势。本文首先介绍了柔性量子点发光二极管(flex⁃QLEDs)及其近期进展,然后讨论了器件结构及界面调控对发光性能的影响。在多层异质结构的flex⁃QLEDs的基础上,总结了三种界面调控方法:阳极界面调控、阴极界面调控、发光层调控。调控聚焦于降低表面粗糙度、增强界面结合力、优化各层能级。最后,对目前flex⁃QLEDs的性能进行了比较与总结,并对未来面临的挑战和机遇进行了展望。
In recent years, flexible display technologies have attracted widespread attention in the field of folding mobile phones and wearable electronics. Especially, flexible displays are indispensable in these flexible electronics. Among them, quantum dot light emitting diodes (QLEDs) have great advantages due to their high color purity, high efficiency and good stability. In this paper, we first give a brief introduction of flexible QLEDs (flex-QLEDs) and summarize the recent development of flex-QLEDs. Then we discussed the device structure and the interface regulation of flex-QLEDs. For flex-QLEDs with multilayer heterostructures, the strategies are categorized into three: anode interface regulation, cathode interface regulation, and light-emitting layer regulation. The regulation focuses on reducing the surface roughness, enhancing the interfacial force, and optimizing the energy level. Finally, the performances of advanced flex-QLEDs are compared and summarized, and the future challenges and opportunities are prospected.
界面调控柔性器件电致发光量子点
interface regulationflexible deviceselectroluminescencequantum dots
BAE W K, LIM J, LEE D, et al. R/G/B/Natural white light thin colloidal quantum dot-based light-emitting devices [J]. Adv. Mater., 2014, 26(37): 6387-6393. doi: 10.1002/adma.201400139http://dx.doi.org/10.1002/adma.201400139
ZHANG Z T, WANG W C, JIANG Y W, et al. High-brightness all-polymer stretchable LED with charge-trapping dilution [J]. Nature, 2022, 603(7902): 624-630. doi: 10.1038/s41586-022-04400-1http://dx.doi.org/10.1038/s41586-022-04400-1
KIM D H, PARK N H, KIM T W. Highly efficient flexible organic light-emitting devices based on PEDOT∶PSS electrodes doped with highly conductive Pyronin B [J]. Nano Energy, 2019, 65: 104027-1-9. doi: 10.1016/j.nanoen.2019.104027http://dx.doi.org/10.1016/j.nanoen.2019.104027
LIU Y F, FENG J, BI Y G, et al. Recent developments in flexible organic light-emitting devices [J]. Adv. Mater. Technol., 2019, 4(1): 1800371-1-19. doi: 10.1002/admt.201800371http://dx.doi.org/10.1002/admt.201800371
SHEN Y, LI M N, LI Y Q, et al. Rational interface engineering for efficient flexible perovskite light-emitting diodes [J]. ACS Nano, 2020, 14(5): 6107-6116. doi: 10.1021/acsnano.0c01908http://dx.doi.org/10.1021/acsnano.0c01908
CHEN C, XUAN T T, YANG Y, et al. Passivation layer of potassium iodide yielding high efficiency and stable deep red perovskite light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2022, 14(14): 16404-16412. doi: 10.1021/acsami.2c00621http://dx.doi.org/10.1021/acsami.2c00621
ZHANG D D, HUANG T Y, DUAN L. Emerging self-emissive technologies for flexible displays [J]. Adv. Mater., 2020, 32(15): 1902391-1-42. doi: 10.1002/adma.201902391http://dx.doi.org/10.1002/adma.201902391
GUSTAFSSON G, CAO Y, TREACY G M, et al. Flexible light-emitting diodes made from soluble conducting polymers [J]. Nature, 1992, 357(6378): 477-479. doi: 10.1038/357477a0http://dx.doi.org/10.1038/357477a0
王好伟, 陈卓, 冯靖雯, 等. 适用于下一代显示技术的量子点发光二极管: 机遇与挑战 [J]. 微纳电子与智能制造, 2020, 2(2): 15-25.
WANG H W, CHEN Z, FENG J W, et al. Quantum-dot light-emitting diodes for next generation display: opportunities and challenges [J]. Micro/Nano Electron. Intell. Manuf., 2020, 2(2): 15-25. (in Chinese)
杨桢林. 柔性ITO电极界面修饰的研究 [D]. 南京: 南京邮电大学, 2019.
YANG Z L. The Study on Interface Modification of Flexible ITO Electrode [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019. (in Chinese)
赵紫玉. 柔性OLED的制备及影响其光效因素的研究 [D]. 西安: 陕西科技大学, 2020. doi: 10.3934/math.2020321http://dx.doi.org/10.3934/math.2020321
ZHAO Z Y. Preparation of Flexible OLED and Factors Influencing Luminous Properites of Flexible OLED [D]. Xi’an: Shaanxi University of Science & Technology, 2020. (in Chinese). doi: 10.3934/math.2020321http://dx.doi.org/10.3934/math.2020321
鲁云华, 康文娟, 胡知之, 等. 柔性透明导电膜衬底材料的研究进展 [J]. 化工新型材料, 2010, 38(9): 27-29. doi: 10.3969/j.issn.1006-3536.2010.09.008http://dx.doi.org/10.3969/j.issn.1006-3536.2010.09.008
LU Y H, KANG W J, HU Z Z, et al. Progress of substrate materials using for flexible transparent conductive films [J]. New Chem. Mater., 2010, 38(9): 27-29. (in Chinese). doi: 10.3969/j.issn.1006-3536.2010.09.008http://dx.doi.org/10.3969/j.issn.1006-3536.2010.09.008
黄翠. 银透明柔性导电薄膜的制备与表征 [D]. 南京: 南京邮电大学, 2015.
HUANG C. Fabrication and Characterization of Silver Transparent Flexible Conductive Thin Film [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2015. (in Chinese)
TAN Z N, XU J, ZHANG C F, et al. Colloidal nanocrystal-based light-emitting diodes fabricated on plastic toward flexible quantum dot optoelectronics [J]. J. Appl. Phys., 2009, 105(3): 034312-1-5. doi: 10.1063/1.3074335http://dx.doi.org/10.1063/1.3074335
KIM T H, CHO K S, LEE E K, et al. Full-colour quantum dot displays fabricated by transfer printing [J]. Nat. Photonics, 2011, 5(3): 176-182. doi: 10.1038/nphoton.2011.12http://dx.doi.org/10.1038/nphoton.2011.12
ZUBAIR M, MUSTAFA M, LEE K, et al. Fabrication of CdSe/ZnS quantum dots thin film by electrohydrodynamics atomization technique for solution based flexible hybrid OLED application [J]. Chem. Eng. J., 2014, 253: 325-331. doi: 10.1016/j.cej.2014.05.067http://dx.doi.org/10.1016/j.cej.2014.05.067
郑聪秀, 徐中炜, 薛璐, 等. 基于AgNWs的全溶液法制备柔性量子点发光器件的性能研究 [J]. 光电子技术, 2018, 38(4): 254-257.
ZHENG C X, XU Z W, XUE L, et al. All-solution flexible quantum dot light-emitting devices with silver nanowire cathode [J]. Optoelectron. Technol., 2018, 38(4): 254-257. (in Chinese)
ZHANG W M, DU J H, WEI Q W, et al. Fabrication of large-area uniform nanometer-thick functional layers and their stacks for flexible quantum dot light-emitting diodes [J]. Small Methods, 2021, 6(2): 2101030. doi: 10.1002/smtd.202101030http://dx.doi.org/10.1002/smtd.202101030
YANG X Y, MUTLUGUN E, DANG C, et al. Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers [J]. ACS Nano, 2014, 8(8): 8224-8231. doi: 10.1021/nn502588khttp://dx.doi.org/10.1021/nn502588k
FANG Y S, DING K, WU Z C, et al. Architectural engineering of nanowire network fine pattern for 30 μm wide flexible quantum dot light-emitting diode application [J]. ACS Nano, 2016, 10(11): 10023-10030. doi: 10.1021/acsnano.6b04506http://dx.doi.org/10.1021/acsnano.6b04506
JI W Y, WANG T, ZHU B Y, et al. Highly efficient flexible quantum-dot light emitting diodes with an ITO/Ag/ITO cathode [J]. J. Mater. Chem. C, 2017, 5(18): 4543-4548. doi: 10.1039/c7tc00514hhttp://dx.doi.org/10.1039/c7tc00514h
CHO S H, HEO S B, KANG S J. Improve the surface of silver nanowire transparent electrode using a double-layer structure for the quantum-dot light-emitting diodes [J]. Jpn. J. Appl. Phys., 2018, 57(3): 032101-1-5. doi: 10.7567/jjap.57.032101http://dx.doi.org/10.7567/jjap.57.032101
YOON S H, KIM S, WOO H J, et al. Flexible quantum dot light-emitting diodes without sacrificing optical and electrical performance [J]. Appl. Surf. Sci., 2021, 566: 150614-1-7. doi: 10.1016/j.apsusc.2021.150614http://dx.doi.org/10.1016/j.apsusc.2021.150614
陶焕, 张明睿, 雷诗云, 等. 柔性量子点复合薄膜及其电致发光器件的弯折性能 [J]. 复合材料学报, 2022, 39(6): 2792-2800. doi: 10.13801/j.cnki.fhclxb.20220124.002http://dx.doi.org/10.13801/j.cnki.fhclxb.20220124.002
TAO H, ZHANG M R, LEI S Y, et al. Bending performance of flexible quantum dot composite films and their electroluminescent device [J]. Acta Mater. Compos. Sinica, 2022, 39(6): 2792-2800. (in Chinese). doi: 10.13801/j.cnki.fhclxb.20220124.002http://dx.doi.org/10.13801/j.cnki.fhclxb.20220124.002
KIM M, KIM D, KWON O, et al. Flexible CdSe/ZnS quantum-dot light-emitting diodes with higher efficiency than rigid devices [J]. Micromachines, 2022, 13(2): 269. doi: 10.3390/mi13020269http://dx.doi.org/10.3390/mi13020269
刘森坤, 罗宇, 王俊杰, 等. 掺杂聚乙烯咔唑绿光磷化铟量子点发光二极管 [J]. 发光学报, 2022, 43(6): 891-900. doi: 10.37188/cjl.20220086http://dx.doi.org/10.37188/cjl.20220086
LIU S K, LUO Y, WANG J J, et al. Green InP quantum dot light-emitting diode with PVK blend in emitting layer [J]. Chin. J. Lumin., 2022, 43(6): 891-900. (in Chinese). doi: 10.37188/cjl.20220086http://dx.doi.org/10.37188/cjl.20220086
DING K, FANG Y S, DONG S H, et al. 24.1% external quantum efficiency of flexible quantum dot light-emitting diodes by light extraction of silver nanowire transparent electrodes [J]. Adv. Optical Mater., 2018, 6(19): 1800347-1-8. doi: 10.1002/adom.201800347http://dx.doi.org/10.1002/adom.201800347
LIU L H, WU L, YANG H, et al. Conductivity and stability enhancement of PEDOT∶PSS electrodes via facile doping of sodium 3-methylsalicylate for highly efficient flexible organic light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2022, 14(1): 1615-1625. doi: 10.1021/acsami.1c21591http://dx.doi.org/10.1021/acsami.1c21591
CHO N K, YU J W, KIM Y H, et al. Effect of oxygen plasma treatment on CdSe/CdZnS quantum-dot light-emitting diodes [J]. Jpn. J. Appl. Phys., 2014, 53(3): 032101-1-3. doi: 10.7567/jjap.53.032101http://dx.doi.org/10.7567/jjap.53.032101
WU C C, WU C I, STURM J C, et al. Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices [J]. Appl. Phys. Lett., 1997, 70(11): 1348-1350. doi: 10.1063/1.118575http://dx.doi.org/10.1063/1.118575
ZHANG Q, LU Y, LIU Z W, et al. Highly efficient organic-inorganic hybrid perovskite quantum dot/nanocrystal light-emitting diodes using graphene electrode and modified PEDOT∶PSS [J]. Org. Electron., 2019, 72: 30-38. doi: 10.1016/j.orgel.2019.05.046http://dx.doi.org/10.1016/j.orgel.2019.05.046
WANG R J, YUAN Q L, KANG Z H, et al. Unravelling the bending stability of flexible quantum-dot light-emitting diodes [J]. Flex. Print. Electron., 2022, 7(1): 015006-1-8. doi: 10.1088/2058-8585/ac4e67http://dx.doi.org/10.1088/2058-8585/ac4e67
HAHM D, CHANG J H, JEONG B G, et al. Design principle for bright, robust, and color-pure InP/ZnSexS1-x/ZnS heterostructures [J]. Chem. Mater., 2019, 31(9): 3476-3484. doi: 10.1021/acs.chemmater.9b00740http://dx.doi.org/10.1021/acs.chemmater.9b00740
郑聪秀. 柔性量子点发光器件的溶液法制备与性能研究 [D]. 福州: 福州大学, 2018.
ZHENG C X. Investigation on the Solution Preparation and Properties of Flexible Quantum Dot Light Emitting Devices [D]. Fuzhou: Fuzhou University, 2018. (in Chinese)
SUN Y Z, CHEN W, WU Y H, et al. A low-temperature-annealed and UV-ozone-enhanced combustion derived nickel oxide hole injection layer for flexible quantum dot light-emitting diodes [J]. Nanoscale, 2019, 11(3): 1021-1028. doi: 10.1039/c8nr08976khttp://dx.doi.org/10.1039/c8nr08976k
DU H, MA L Y, WANG X, et al. Synthesis of Cu-modified nickel oxide nanocrystals and their applications as hole-injection layers for quantum-dot light-emitting diodes [J]. Chem. Eur. J., 2021, 27(44): 11298-11302. doi: 10.1002/chem.202101744http://dx.doi.org/10.1002/chem.202101744
吴薇. 柔性CdSe/ZnS量子点发光二极管的制备及其性能研究 [D]. 福州: 福州大学, 2015.
WU W. Fabrication and Properties of CdSe/ZnS Quantum Dots⁃based Flexible Quantum⁃dot Light⁃emitting Devices [D]. Fuzhou: Fuzhou University, 2015. (in Chinese)
景鹏涛. CdSe量子点发光性质调控和高效胶体量子点发光二极管制备 [D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2011. doi: http://159.226.165.120//handle/181722/2821http://dx.doi.org/http://159.226.165.120//handle/181722/2821
JING P T. Controlled Photoluminescence Properties of CdSe Quantum Dots and Fabrication of Highly Efficient Colloidal Quantum Dot Light⁃emitting Diodes [D]. Changchun: University of Chinese Academy of Sciences(Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2011. (in Chinese). doi: http://159.226.165.120//handle/181722/2821http://dx.doi.org/http://159.226.165.120//handle/181722/2821
KIM Y, GRECO T, IPPEN C, et al. Indium phosphide(InP) colloidal quantum dot based light-emitting diodes designed on flexible PEN substrate [C]. 2013 IEEE 5th International Nanoelectronics Conference, Singapore, 2013: 425-427. doi: 10.1109/inec.2013.6466067http://dx.doi.org/10.1109/inec.2013.6466067
PAN J Y, CHEN J, HUANG Q Q, et al. Flexible quantum dot light emitting diodes based on ZnO nanoparticles [J]. RSC Adv., 2015, 5(100): 82192-82198. doi: 10.1039/c5ra10656ghttp://dx.doi.org/10.1039/c5ra10656g
CHEN F, LIU Z Y, GUAN Z Y, et al. Chloride-passivated Mg-doped ZnO nanoparticles for improving performance of cadmium-free, quantum-dot light-emitting diodes [J]. ACS Photonics, 2018, 5(9): 3704-3711. doi: 10.1021/acsphotonics.8b00722http://dx.doi.org/10.1021/acsphotonics.8b00722
CHOI M K, YANG J, KANG K, et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing [J]. Nat. Commun., 2015, 6: 7149-1-8. doi: 10.1038/ncomms8149http://dx.doi.org/10.1038/ncomms8149
赵梦琪. 柔性钙钛矿型LED器件的制备与研究 [D]. 北京: 中国地质大学(北京), 2020. doi: 10.30919/es8d689http://dx.doi.org/10.30919/es8d689
ZHAO M Q. Preparation and Research of Flexible Perovskite LED Device [D]. Beijing: China University of Geosciences (Beijing), 2020. (in Chinese). doi: 10.30919/es8d689http://dx.doi.org/10.30919/es8d689
PARK J Y, ADVINCULA R C. Tunable electroluminescence properties in CdSe/PVK guest⁃host based light-emitting devices [J]. Phys. Chem. Chem. Phys., 2014, 16(18): 8589-8593. doi: 10.1039/c4cp00066hhttp://dx.doi.org/10.1039/c4cp00066h
HAN M G, LEE Y, KWON H I, et al. InP-based quantum dot light-emitting diode with a blended emissive layer [J]. ACS Energy Lett., 2021, 6(4): 1577-1585.
沈阳. 高效钙钛矿发光二极管的光学与界面调控研究 [D]. 苏州: 苏州大学, 2020.
SHEN Y. Light Manipulation and Interface Engineering for Efficient Perovskite Light⁃emitting Diodes [D]. Suzhou: Soochow University, 2020. (in Chinese)
RHEE S, HAHM D, SEOK H J, et al. Steering interface dipoles for bright and efficient all-inorganic quantum dot based light-emitting diodes [J]. ACS Nano, 2021, 15(12): 20332-20340. doi: 10.1021/acsnano.1c08631http://dx.doi.org/10.1021/acsnano.1c08631
YAO J S, ZHANG J C, WANG L, et al. Suppressing Auger recombination in cesium lead bromide perovskite nanocrystal film for bright light-emitting diodes [J]. J. Phys. Chem. Lett., 2020, 11(21): 9371-9378. doi: 10.1021/acs.jpclett.0c02777http://dx.doi.org/10.1021/acs.jpclett.0c02777
WIJAYA H, DARWAN D, ZHAO X F, et al. Efficient near-infrared light-emitting diodes based on In(Zn)As-In(Zn)P-GaP-ZnS quantum dots [J]. Adv. Funct. Mater., 2020, 30(4): 1906483-1-7. doi: 10.1002/adfm.201906483http://dx.doi.org/10.1002/adfm.201906483
JIA Y H, YU H, ZHOU Y, et al. Excess ion-induced efficiency roll-off in high-efficiency perovskite light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2021, 13(24): 28546-28554. doi: 10.1021/acsami.1c05458http://dx.doi.org/10.1021/acsami.1c05458
SHEN W S, YUAN S, TIAN Q S, et al. Surfacial ligand management of a perovskite film for efficient and stable light-emitting diodes [J]. J. Mater. Chem. C, 2019, 7(46): 14725-14730. doi: 10.1039/c9tc05037jhttp://dx.doi.org/10.1039/c9tc05037j
刘培朝. CdSe/CdS/ZnS和CsPbX3量子点的制备及在LED中的应用 [D]. 武汉: 湖北大学, 2017.
LIU P C. Synthesis of CdSe/CdS/ZnS and CsPbX3 Quantum Dots Towards LED Application [D]. Wuhan: Hubei University, 2017. (in Chinese)
MA Z Z, JI X Z, WANG M, et al. Carbazole-containing polymer-assisted trap passivation and hole-injection promotion for efficient and stable CsCu2I3-based yellow LEDs [J]. Adv. Sci., 2022, 9(27): 2202408-1-12. doi: 10.1002/advs.202202408http://dx.doi.org/10.1002/advs.202202408
WANG L, CHEN T, LIN Q L, et al. High-performance azure blue quantum dot light-emitting diodes via doping PVK in emitting layer [J]. Org. Electron., 2016, 37: 280-286. doi: 10.1016/j.orgel.2016.06.032http://dx.doi.org/10.1016/j.orgel.2016.06.032
LIANG F, LIU Y, HU Y, et al. Polymer as an additive in the emitting layer for high-performance quantum dot light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2017, 9(23): 20239-20246. doi: 10.1021/acsami.7b05629http://dx.doi.org/10.1021/acsami.7b05629
孙双桥. 钙钛矿发光二极管界面调控及退化机理研究 [D]. 苏州: 苏州大学, 2020.
SUN S Q. Interface Modification and Degradation Mechanism of Perovskite Light⁃emitting Diodes [D]. Suzhou: Soochow University, 2020. (in Chinese)
李雪飞. 铅卤钙钛矿量子点发光二极管的缺陷钝化与性能研究 [D]. 合肥: 中国科学技术大学, 2021.
LI X F. Defect Passivation and Performance Investigation of Lead Halide Perovskite Quantum Dots Light⁃emitting Diodes [D]. Hefei: University of Science and Technology of China, 2021. (in Chinese)
CHOI M K, YANG J, HYEON T, et al. Flexible quantum dot light-emitting diodes for next-generation displays [J]. npj Flexible Electron., 2018, 2(1): 10-1-14. doi: 10.1038/s41528-018-0023-3http://dx.doi.org/10.1038/s41528-018-0023-3
KIM D, FU Y, KIM S, et al. Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device [J]. ACS Nano, 2017, 11(2): 1982-1990. doi: 10.1021/acsnano.6b08142http://dx.doi.org/10.1021/acsnano.6b08142
张梦华. PEIE界面修饰层在全溶液倒置柔性量子点发光二极管中的应用 [D]. 郑州: 河南大学, 2019.
ZHANG M H. Application of PEIE Interface Modification Layer in All⁃solution⁃processed Flexible Inverted Quantum Dot⁃light⁃emitting Device [D]. Zhengzhou: Henan University, 2019. (in Chinese)
LI S J, ZHA T Y, GONG X Y, et al. Cu-Cd-Zn-S/ZnS core/shell quantum dot/polyvinyl alcohol flexible films for white light-emitting diodes [J]. RSC Adv., 2020, 10(41): 24425-24433. doi: 10.1039/d0ra03540hhttp://dx.doi.org/10.1039/d0ra03540h
DAI X L, ZHANG Z X, JIN Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515(7525): 96-99. doi: 10.1038/nature13829http://dx.doi.org/10.1038/nature13829
XUE L, LIU Y, LI F S, et al. Highly flexible light emitting diodes based on a quantum dots-polymer composite emitting layer [J]. Vacuum, 2019, 163: 282-286. doi: 10.1016/j.vacuum.2019.02.033http://dx.doi.org/10.1016/j.vacuum.2019.02.033
郭洁, 陆敏, 孙思琪, 等. 基于CsPbBr3钙钛矿量子点的高柔性绿光发光二极管 [J]. 发光学报, 2020, 41(3): 233-240. doi: 10.3788/fgxb20204103.0233http://dx.doi.org/10.3788/fgxb20204103.0233
GUO J, LU M, SUN S Q, et al. Highly flexible green light-emitting diode based on CsPbBr3 perovskite quantum dots [J]. Chin. J. Lumin., 2020, 41(3): 233-240. (in Chinese). doi: 10.3788/fgxb20204103.0233http://dx.doi.org/10.3788/fgxb20204103.0233
LIM J, PARK M, BAE W K, et al. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots [J]. ACS Nano, 2013, 7(10): 9019-9026. doi: 10.1021/nn403594jhttp://dx.doi.org/10.1021/nn403594j
张京, 吕培文, 管中源, 等. Ag-In-Zn-S四元半导体纳米晶的可控制备及其在电致发光二极管中的应用 [J]. 发光学报, 2021, 42(5): 620-628. doi: 10.37188/CJL.20210016http://dx.doi.org/10.37188/CJL.20210016
ZHANG J, LV P W, GUAN Z Y, et al. Controllable synthesis of Ag-In-Zn-S quaternary nanocrystals and their applications in electroluminescent light-emitting diodes [J]. Chin. J. Lumin., 2021, 42(5): 620-628. (in Chinese). doi: 10.37188/CJL.20210016http://dx.doi.org/10.37188/CJL.20210016
YU R M, WANG T, KANG Z H, et al. Intaglio-type random silver networks as the cathodes for efficient full-solution processed flexible quantum-dot light-emitting diodes [J]. Nanoscale, 2018, 10(47): 22541-22548. doi: 10.1039/c8nr05678ahttp://dx.doi.org/10.1039/c8nr05678a
0
浏览量
286
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构