浏览全部资源
扫码关注微信
1.延安大学 化学与化工学院, 延安市分析技术与检测重点实验室, 陕西 延安 716000
2.中材地质工程勘查研究院有限公司, 北京 100102
3.延安大学 医学院, 陕西 延安 716000
[ "张越诚(1990-),男,陕西西安人,博士,讲师,硕士生导师,2021年于瑞典Malmö University获得博士学位,主要从事生化分析与分子诊断方面的 研究。 E-mail: YuechengZhang@outlook.com" ]
[ "王清清(1998-),女,陕西西安人,硕士研究生,2019年于宝鸡文理学院获得学士学位,主要从事发光分析的研究。E⁃mail: qqwangcrystal@163.com" ]
[ "马红燕(1966-),女,陕西延安人,硕士,教授,硕士生导师,2004年于陕西师范大学获得硕士学位,主要从事发光分析的研究。 E-mail: Mahy6614@163.com" ]
纸质出版日期:2023-04-05,
收稿日期:2022-09-22,
修回日期:2022-10-11,
移动端阅览
张越诚,王清清,马静等.环境水样中S2-的CQDs双发射比率荧光测定[J].发光学报,2023,44(04):729-737.
ZHANG Yuecheng,WANG Qingqing,MA Jing,et al.Determination of S2- in Environmental Water Samples Using Dual-emission CQDs as Ratio Fluorescent Probe[J].Chinese Journal of Luminescence,2023,44(04):729-737.
张越诚,王清清,马静等.环境水样中S2-的CQDs双发射比率荧光测定[J].发光学报,2023,44(04):729-737. DOI: 10.37188/CJL.20220339.
ZHANG Yuecheng,WANG Qingqing,MA Jing,et al.Determination of S2- in Environmental Water Samples Using Dual-emission CQDs as Ratio Fluorescent Probe[J].Chinese Journal of Luminescence,2023,44(04):729-737. DOI: 10.37188/CJL.20220339.
以葡萄糖为碳源、对苯二胺为氮源,一步水热法合成了新型双发射荧光碳量子点(GP⁃CQDs),对该GP⁃CQDs的形貌及光谱特性进行了研究。实验发现,在单一波长
λ
ex
=300 nm激发下,该GP⁃CQDs于348 nm和452 nm处有双发射荧光信号。将MnO
4
-
加入GP⁃CQDs溶液,GP⁃CQDs于452 nm处的荧光信号完全猝灭,而348 nm处的信号基本不变。于上述猝灭体系中继续加入S
2-
,其于425 nm处产生新的荧光发射峰,相较于GP⁃CQDs原452 nm处的荧光信号,发射峰位置发生蓝移,且发射峰强度随S
2-
的浓度增加线性增强,而348 nm处的信号无增敏现象。根据该现象,以425 nm处的荧光峰为响应信号、348 nm荧光峰为参比信号,可直接构建基于S
2-
测定的比率荧光传感探针。实验对该探针的构建条件及分析性能进行了优化,当S
2-
浓度在3.1×10
-8
~ 8.0×10
-6
mol/L范围内时,与348 nm和425 nm两处的荧光强度比值(
I
425
/
I
348
)呈现良好的线性关系,检出限为9.41×10
-9
mol/L(3
σ
/
k
)。对MnO
4
-
及S
2-
与GP⁃CQDs的作用机理进行了探讨。该方法简单、快速、灵敏度高,用于环境水样中S
2-
的测定,结果满意。
Dual-emission fluorescence carbon quantum dots (GP-CQDs) were synthesized by a one-step hydrothermal method using glucose and p-phenylenediamine as carbon sources. The morphology and spectral properties of GP-CQDs were studied. It was found that the GP-CQDs have dual emission fluorescence signals at 348 nm and 452 nm under a single excitation wavelength at 300 nm. When MnO
4
-
was added to the GP-CQDs solution, the fluorescence signal of GP-CQDs at 452 nm was completely quenched; however, the signals at 348 nm kept stable. When S
2-
was added to the quenching system above, a new fluorescence emission peak was generated at 425 nm. Compared with the original fluorescence peak at 452 nm, the peak was blue-shifted, and the fluorescence intensity at 425 nm was linearly enhanced with the S
2-
concentration. With the fluorescence peak at 425 nm as the response signal and the 348 nm fluorescence peak as the reference signal, a ratiometric fluorescence sensing probe for S
2-
determination can be directly constructed. Under the optimal condition, this method showed a good linear relationship in the range of 3.1×10
-8
-8.0×10
-6
mol/L and the detection limit was calculated to be 9.41×10
-9
mol/L(3
σ
/
k
). The basic mechanism of the proposed method was further discussed. Moreover, this method can be applied to detect S
2-
in environmental water samples with satisfactory results.
硫离子(S2-)双发射荧光碳量子点比率荧光传感器
sulfur iondual-emission carbon quantum dotsratio fluorescence probe
RASAL A S, YADAV S, YADAV A, et al. Carbon quantum dots for energy applications: a review [J]. ACS Appl. Nano Mater., 2021, 4(7): 6515-6541. doi: 10.1021/acsanm.1c01372http://dx.doi.org/10.1021/acsanm.1c01372
张路鹏, 张清梅, 何松杰, 等. 碳点的功能化研究进展 [J]. 发光学报, 2022, 43(7): 1147-1163. doi: 10.37188/CJL.20220077http://dx.doi.org/10.37188/CJL.20220077
ZHANG L P, ZHANG Q M, HE S J, et al. Progress on functionalization of carbon dots [J]. Chin. J. Lumin., 2022, 43(7): 1147-1163. (in Chinese). doi: 10.37188/CJL.20220077http://dx.doi.org/10.37188/CJL.20220077
赵沛, 曹娟娟, 张琴, 等. 基于碳量子点的绿色合成及生物成像研究进展 [J]. 分析试验室, 2022, 41(7): 861-868.
ZHAO P, CAO J J, ZHANG Q, et al. Advances in green synthesis and bioimaging based on carbon quantum dots [J]. Chin. J. Anal. Lab., 2022, 41(7): 861-868. (in Chinese)
YUAN T, MENG T, HE P, et al. Carbon quantum dots: an emerging material for optoelectronic applications [J]. J. Mater. Chem. C, 2019, 7(23): 6820-6835. doi: 10.1039/c9tc01730ehttp://dx.doi.org/10.1039/c9tc01730e
DESMOND L J, PHAN A N, GENTILE P. Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy [J]. Environ. Sci.: Nano, 2021, 8(4): 848-862. doi: 10.1039/d1en00017ahttp://dx.doi.org/10.1039/d1en00017a
ZHAO D L, CHUNG T S. Applications of carbon quantum dots(CQDs) in membrane technologies: a review [J]. Water Res., 2018, 147: 43-49. doi: 10.1016/j.watres.2018.09.040http://dx.doi.org/10.1016/j.watres.2018.09.040
HARROUN S G, LAI J Y, HUANG C C, et al. Reborn from the ashes: turning organic molecules to antimicrobial carbon quantum dots [J]. ACS Infect. Dis., 2017, 3(11): 777-779. doi: 10.1021/acsinfecdis.7b00150http://dx.doi.org/10.1021/acsinfecdis.7b00150
ZHANG J J, CHENG F F, LI J J, et al. Fluorescent nanoprobes for sensing and imaging of metal ions: recent advances and future perspectives [J]. Nano Today, 2016, 11(3): 309-329. doi: 10.1016/j.nantod.2016.05.010http://dx.doi.org/10.1016/j.nantod.2016.05.010
YAN F Y, BAI Z J, LIU F, et al. Ratiometric fluorescence probes based on carbon dots [J]. Curr. Org. Chem., 2018, 22(1): 57-66. doi: 10.2174/1385272821666171005152058http://dx.doi.org/10.2174/1385272821666171005152058
HU Y, YANG Z B, LU X, et al. Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging [J]. Nanoscale, 2020, 12(9): 5494-5500. doi: 10.1039/d0nr00381fhttp://dx.doi.org/10.1039/d0nr00381f
GUI R J, JIN H, BU X N, et al. Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers [J]. Coord. Chem. Rev., 2019, 383: 82-103. doi: 10.1016/j.ccr.2019.01.004http://dx.doi.org/10.1016/j.ccr.2019.01.004
GUAN Q W, SU R G, ZHANG M R, et al. Highly fluorescent dual-emission red carbon dots and their applications in optoelectronic devices and water detection [J]. New J. Chem., 2019, 43(7): 3050-3058. doi: 10.1039/c8nj06074fhttp://dx.doi.org/10.1039/c8nj06074f
LI Y, WANG Y Q, LIU D, et al. Dual-emission ratiometric fluorescent probe based on lanthanide-functionalized carbon quantum dots for white light emission and chemical sensing [J]. ACS Omega, 2021, 6(22): 14629-14638. doi: 10.1021/acsomega.1c01745http://dx.doi.org/10.1021/acsomega.1c01745
MU H R, YU M, WANG L, et al. Catching S2- and Cu2+ by a highly sensitive and efficient salamo-like fluorescence-ultraviolet dual channel chemosensor [J]. Phosphorus, Sulfur, Silicon Relat. Elem., 2020, 195(9): 730-739. doi: 10.1080/10426507.2020.1756807http://dx.doi.org/10.1080/10426507.2020.1756807
LUO T, WANG X B, QIAN Y T, et al. Direct and sensitive detection of sulfide ions based on one-step synthesis of ionic liquid functionalized fluorescent carbon nanoribbons [J]. RSC Adv., 2019, 9(64): 37484-37490. doi: 10.1039/c9ra07701dhttp://dx.doi.org/10.1039/c9ra07701d
MESKO M F, PEREIRA R M, SCAGLIONI P T, et al. Single analysis of human hair for determining halogens and sulfur after sample preparation based on combustion reaction [J]. Anal. Bioanal. Chem., 2019, 411(19): 4873-4881. doi: 10.1007/s00216-019-01733-1http://dx.doi.org/10.1007/s00216-019-01733-1
SUGAHARA S, SUZUKI M, KAMIYA H, et al. Colorimetric determination of sulfide in microsamples [J]. Anal. Sci., 2016, 32(10): 1129-1131. doi: 10.2116/analsci.32.1129http://dx.doi.org/10.2116/analsci.32.1129
SKOK A, VISHNIKIN A, BAZELA Y. Online determination of sulfide using an optical immersion probe combined with headspace liquid-phase microextraction [J]. RSC Adv., 2022, 12(28): 17675-17681. doi: 10.1039/d2ra01010khttp://dx.doi.org/10.1039/d2ra01010k
WANG Z X, ZHENG C L, LI Q L, et al. Electrochemiluminescence of a nanoAg-carbon nanodot composite and its application to detect sulfide ions [J]. Analyst, 2014, 139(7): 1751-1755. doi: 10.1039/c3an02097ehttp://dx.doi.org/10.1039/c3an02097e
LAWRENCE N S, DEO R P, WANG J. Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes [J]. Anal. Chim. Acta, 2004, 517(1-2): 131-137. doi: 10.1016/j.aca.2004.03.101http://dx.doi.org/10.1016/j.aca.2004.03.101
ALI H R H, HASSAN A I, HASSAN Y F, et al. Development of dual function polyamine-functionalized carbon dots derived from one step green synthesis for quantitation of Cu2+ and S2- ions in complicated matrices with high selectivity [J]. Anal. Bioanal. Chem., 2020, 412(6): 1353-1363. doi: 10.1007/s00216-019-02362-4http://dx.doi.org/10.1007/s00216-019-02362-4
YANG J, HUANG Y, CUI H Y, et al. A FRET fluorescent sensor for ratiometric and visual detection of sulfide based on carbon dots and silver nanoclusters [J]. J. Fluoresc., 2022, 32(5): 1815-1823. doi: 10.1007/s10895-022-02981-8http://dx.doi.org/10.1007/s10895-022-02981-8
RAJENDRAN K, RAJENDRAN G, KASTHURI J, et al. Sweet corn(Zea mays L. var. rugosa) derived fluorescent carbon quantum dots for selective detection of hydrogen sulfide and bioimaging applications [J]. ChemistrySelect, 2019, 4(46): 13668-13676. doi: 10.1002/slct.201903385http://dx.doi.org/10.1002/slct.201903385
湛志华, 陈茺而, 莫大幸, 等. 单激发双发射近红外荧光碳量子点制备、荧光性能与细胞成像 [J]. 发光学报, 2021, 42(8): 1307-1313. doi: 10.37188/CJL.20210157http://dx.doi.org/10.37188/CJL.20210157
ZHAN Z H, CHEN C E, MO D X, et al. Preparation, fluorescent properties and cell imaging of near infrared fluorescent carbon quantum dots with single excited double emission [J]. Chin. J. Lumin., 2021, 42(8): 1307-1313. (in Chinese). doi: 10.37188/CJL.20210157http://dx.doi.org/10.37188/CJL.20210157
MIAO C F, GUO X Z, ZHANG X T, et al. Ratiometric fluorescence assay based on carbon dots and Cu2+-catalyzed oxidation of O-phenylenediamine for the effective detection of deferasirox [J]. RSC Adv., 2021, 11(55): 34525-34532. doi: 10.1039/d1ra07078ahttp://dx.doi.org/10.1039/d1ra07078a
ZHU S J, SONG Y B, ZHAO X H, et al. The photoluminescence mechanism in carbon dots(graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective [J]. Nano Res., 2015, 8(2): 355-381. doi: 10.1007/s12274-014-0644-3http://dx.doi.org/10.1007/s12274-014-0644-3
PANDIYAN S, ARUMUGAM L, SRIRENGAN S P, et al. Biocompatible carbon quantum dots derived from sugarcane industrial wastes for effective nonlinear optical behavior and antimicrobial activity applications [J]. ACS Omega, 2020, 5(47): 30363-30372. doi: 10.1021/acsomega.0c03290http://dx.doi.org/10.1021/acsomega.0c03290
QI C, WANG H D, YANG A L, et al. Facile fabrication of highly fluorescent N-doped carbon quantum dots using an ultrasonic-assisted hydrothermal method: optical properties and cell imaging [J]. ACS Omega, 2021, 6(48): 32904-32916. doi: 10.1021/acsomega.1c04903http://dx.doi.org/10.1021/acsomega.1c04903
李庆芝, 周奕华, 陈袁, 等. 比率型碳点荧光传感器检测机理与应用研究进展 [J]. 发光学报, 2020, 41(5): 579-591. doi: 10.3788/fgxb20204105.0579http://dx.doi.org/10.3788/fgxb20204105.0579
LI Q Z, ZHOU Y H, CHEN Y, et al. Research progress on detection mechanism and application of carbon dots-based ratiometric fluorescence sensor [J]. Chin. J. Lumin., 2020, 41(5): 579-591. (in Chinese). doi: 10.3788/fgxb20204105.0579http://dx.doi.org/10.3788/fgxb20204105.0579
WU P, LI W, WU Q, et al. Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe3+ ions in an acidic environment [J]. RSC Adv., 2017, 7(70): 44144-44153. doi: 10.1039/c7ra08400ehttp://dx.doi.org/10.1039/c7ra08400e
CHOWDHURY S, ROOJ B, DUTTA A, et al. Review on recent advances in metal ions sensing using different fluorescent probes [J]. J. Fluoresc., 2018, 28(4): 999-1021. doi: 10.1007/s10895-018-2263-yhttp://dx.doi.org/10.1007/s10895-018-2263-y
SAHA S. Anion-induced electron transfer [J]. Acc. Chem. Res., 2018, 51(9): 2225-2236. doi: 10.1021/acs.accounts.8b00197http://dx.doi.org/10.1021/acs.accounts.8b00197
0
浏览量
210
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构