浏览全部资源
扫码关注微信
中国计量大学 光学与电子科技学院, 光电材料与器件研究院, 浙江省稀土光电材料与器件重点实验室, 浙江 杭州 310018
[ "李波(1996-),男,山西晋城人,硕士研究生,2019年于山东科技大学获得学士学位,主要从事发光材料的研究。 E-mail: 2660655755@qq.com" ]
[ "黄立辉(1972-),男,江西赣县人,博士,教授,2001年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事发光材料与器件的研究。E-mail :huanglihui@cjlu.edu.cn." ]
纸质出版日期:2023-02-05,
收稿日期:2022-09-16,
修回日期:2022-10-09,
扫 描 看 全 文
李波,黄立辉,陈新禹等.Tm3+/Yb3+共掺含LaF3纳米晶锗酸盐微晶玻璃的上转换发光及其温度传感特性[J].发光学报,2023,44(02):271-278.
LI Bo,HUANG Lihui,CHEN Xinyu,et al.Upconversion Luminescence and Temperature Sensing Characteristics of Tm3+/Yb3+ Co-doped Germanate Glass Ceramics Containing LaF3 Nanocrystals[J].Chinese Journal of Luminescence,2023,44(02):271-278.
李波,黄立辉,陈新禹等.Tm3+/Yb3+共掺含LaF3纳米晶锗酸盐微晶玻璃的上转换发光及其温度传感特性[J].发光学报,2023,44(02):271-278. DOI: 10.37188/CJL.20220337.
LI Bo,HUANG Lihui,CHEN Xinyu,et al.Upconversion Luminescence and Temperature Sensing Characteristics of Tm3+/Yb3+ Co-doped Germanate Glass Ceramics Containing LaF3 Nanocrystals[J].Chinese Journal of Luminescence,2023,44(02):271-278. DOI: 10.37188/CJL.20220337.
通过传统的熔融淬火技术以及后续热处理法制备了Tm
3+
/Yb
3+
共掺含LaF
3
纳米晶锗酸盐微晶玻璃。通过DTA和XRD研究其热性质和LaF
3
纳米晶的可控析出。通过透过光谱和上转换发光光谱研究了玻璃的光学性能。利用荧光强度比(FIR)技术研究了微晶玻璃样品在980 nm激光激发下的上转换发光光谱与温度的依赖关系。研究发现,该微晶玻璃样品在313~573 K温度范围内的最大绝对灵敏度
S
a
和最大相对灵敏度
S
r
分别为2.6×10
-4
K
-1
(573 K)和2.3×10
-2
K
-1
(313 K)。结果表明,Tm
3+
/Yb
3+
共掺含LaF
3
纳米晶锗酸盐微晶玻璃在温度传感领域具有潜在的应用前景。
Tm
3+
/Yb
3+
co-doped germanate glass ceramics containing LaF
3
nanocrystals were prepared by traditional melt quenching technique and subsequent heat treatment. The thermal properties and the controllable precipitation of LaF
3
nanocrystals were studied by DTA and XRD. The optical properties of the glasses were studied by transmission spectra and upconversion luminescence spectra. The temperature dependence of upconversion luminescence spectra of glass ceramics excited by 980 nm laser was studied by fluorescence intensity ratio (FIR) technique. It is found that the maximum absolute sensitivity (
S
a
) and the maximum relative sensitivity (
S
r
) of the glass ceramics are 2.6×10
-4
K
-1
(573 K) and 2.3×10
-2
K
-1
(313 K) at the temperature range of 313-573 K, respectively. The results show that Tm
3+
/Yb
3+
co-doped germanate glass ceramics containing LaF
3
nanocrystals have potential application prospects in the field of temperature sensing.
锗酸盐玻璃微晶玻璃Tm3+/Yb3+温度传感
germanate glassglass ceramicsTm3+/Yb3+temperature sensing
SUO H, GUO C F, LI T. Broad‑scope thermometry based on dual‑color modulation up‑conversion phosphor Ba5Gd8Zn4O21∶Er3+/Yb3+ [J]. J. Phys. Chem. C, 2016, 120(5): 2914-2924. doi: 10.1021/acs.jpcc.5b11786http://dx.doi.org/10.1021/acs.jpcc.5b11786
SINGH A K, SHAHI P K, RAI S B, et al. Host matrix impact on Er3+ upconversion emission and its temperature dependence [J]. RSC Adv., 2015, 5(21): 16067-16073. doi: 10.1039/c4ra12637hhttp://dx.doi.org/10.1039/c4ra12637h
DU P P, SUN X D, ZHU Q, et al. Garnet‑structured Li6CaLa2Nb2O12∶Yb/Er new phosphor showing superior performance of optical thermometry [J]. Scr. Mater., 2020, 185: 140-145. doi: 10.1016/j.scriptamat.2020.04.039http://dx.doi.org/10.1016/j.scriptamat.2020.04.039
LONG S W, MA D C, ZHU Y Z, et al. Temperature dependence of white light emission and energy transfer in Dy3+ and Tm3+ co‑doped LiNbO3 single crystals [J]. J. Lumin., 2017, 192: 728-733. doi: 10.1016/j.jlumin.2017.07.049http://dx.doi.org/10.1016/j.jlumin.2017.07.049
WANG X F, WANG Y M, BU Y Y, et al. Influence of doping and excitation powers on optical thermometry in Yb3+⁃Er3+ doped CaWO4 [J]. Sci. Rep., 2017, 7: 43383-1-9. doi: 10.1038/srep43383http://dx.doi.org/10.1038/srep43383
WAWRZYNCZYK D, BEDNARKIEWICZ A, NYK M, et al. Neodymium(Ⅲ) doped fluoride nanoparticles as non⁃contact optical temperature sensors [J]. Nanoscale, 2012, 4(22): 6959-6961. doi: 10.1039/c2nr32203jhttp://dx.doi.org/10.1039/c2nr32203j
ZHANG H L, PENG D F, WANG W, et al. Mechanically induced light emission and infrared⁃laser⁃induced upconversion in the Er⁃doped CaZnOS multifunctional piezoelectric semiconductor for optical pressure and temperature sensing [J]. J. Phys. Chem. C, 2015, 119(50): 28136-28142. doi: 10.1021/acs.jpcc.5b10302http://dx.doi.org/10.1021/acs.jpcc.5b10302
金叶, 李坤, 罗旭, 等. Sc2(WO4)3∶Er3+/Yb3+的上转换发光及其温度传感特性 [J]. 发光学报, 2021, 42(1): 91-97. doi: 10.37188/cjl.20200326http://dx.doi.org/10.37188/cjl.20200326
JIN Y, LI K, LUO X, et al. Upconversion luminescence and temperature sensing properties for Sc2(WO4)3∶Er3+/Yb3+ [J]. Chin. J. Lumin., 2021, 42(1): 91-97. (in Chinese). doi: 10.37188/cjl.20200326http://dx.doi.org/10.37188/cjl.20200326
张焕君, 董兴邦, 李海宁, 等. 六方相LaOF∶Er, Yb的上转换发光及温度传感特性 [J]. 发光学报, 2020, 41(5): 536-541. doi: 10.3788/fgxb20204105.0536http://dx.doi.org/10.3788/fgxb20204105.0536
ZHANG H J, DONG X B, LI H N, et al. Upconversion emission and temperature sensing of R‑LaOF∶Er,Yb [J]. Chin. J. Lumin., 2020, 41(5): 536-541. (in Chinese). doi: 10.3788/fgxb20204105.0536http://dx.doi.org/10.3788/fgxb20204105.0536
HU F F, CAO J K, WEI X T, et al. Self‑crystallized novel transparent Na5Yb9F32∶Er3+ glass‑ceramics for optical thermometry and spectral conversion [J]. J. Alloys Compd., 2017, 722: 669-675. doi: 10.1016/j.jallcom.2017.06.171http://dx.doi.org/10.1016/j.jallcom.2017.06.171
GU C, DING Y Y, QUAN X H, et al. Near‑infrared luminescent Nd3+/Yb3+‑codoped metal‑organic framework for ratio metric temperature sensing in physiological range [J]. J. Rare Earths, 2021, 39(9): 1024-1030. doi: 10.1016/j.jre.2020.07.011http://dx.doi.org/10.1016/j.jre.2020.07.011
ZHU R, ZHANG K, ZHU C C, et al. Temperature sensing behavior of Tm3+:1G4(a), 1G4(b) in oxyfluoride glass ceramics containing BaYbxY1-xF5 nanocrystals [J]. J. Rare Earths, 2020, 38(4): 356-361. doi: 10.1016/j.jre.2019.11.012http://dx.doi.org/10.1016/j.jre.2019.11.012
DEY R, KUMARI A, SONI A K, et al. CaMoO4∶Ho3+‑Yb3+∶Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing [J]. Sens. Actuators B: Chem., 2015, 210: 581-588. doi: 10.1016/j.snb.2015.01.007http://dx.doi.org/10.1016/j.snb.2015.01.007
ZHOU H L, AN N, ZHU K S, et al. Optical temperature sensing properties of Tm3+/Yb3+ co‑doped LuAG polycrystalline phosphor based on up‑conversion luminescence [J]. J. Lumin., 2021, 229: 117656-1-7. doi: 10.1016/j.jlumin.2020.117656http://dx.doi.org/10.1016/j.jlumin.2020.117656
郑龙江, 高晓阳, 徐伟, 等. Tm3+, Yb3+共掺微晶玻璃蓝色上转换荧光的温度特性 [J]. 发光学报, 2012, 33(9): 944-948.
ZHENG L J, GAO X Y, XU W, et al. Temperature characteristic of blue up⁃conversion emission in Tm3+, Yb3+ codoped oxyfluoride glass ceramic [J]. Chin. J. Lumin., 2012, 33(9): 944-948. (in Chinese)
李瑞琴, 邱建备, 杨正文, 等. Yb3+/Tm3+共掺杂Sb2O4荧光粉的制备及上转换发光性质研究 [J]. 光谱学与光谱分析, 2014, 34(3): 630-633.
LI R Q, QIU J B, YANG Z W, et al. Preparation and up‑conversion luminescence properties of Yb3+/Tm3+ co⁃doped Sb2O4 powder [J]. Spectrosc. Spect. Anal., 2014, 34(3): 630-633. (in Chinese)
YU L, YE L H, BAO R J, et al. Sensitivity‑enhanced Tm3+/Yb3+ co‑doped YAG single crystal optical fiber thermometry based on upconversion emissions [J]. Opt. Commun., 2018, 410: 632-636. doi: 10.1016/j.optcom.2017.10.075http://dx.doi.org/10.1016/j.optcom.2017.10.075
CHEN D Q, LIU S, LI X Y, et al. Upconverting luminescence based dual‑modal temperature sensing for Yb3+/Er3+/Tm3+∶YF3 nanocrystals embedded glass ceramic [J]. J. Eur. Ceram. Soc., 2017, 37(15): 4939-4945. doi: 10.1016/j.jeurceramsoc.2017.06.012http://dx.doi.org/10.1016/j.jeurceramsoc.2017.06.012
LISIECKI R, RYBA-ROMANOWSKI W. Silica‑based oxyfluoride glass and glass‑ceramic doped with Tm3+ and Yb3+‑VUV‑VIS‑NIR spectroscopy and optical thermometry [J]. J. Alloys Compd., 2020, 814: 152304-1-9. doi: 10.1016/j.jallcom.2019.152304http://dx.doi.org/10.1016/j.jallcom.2019.152304
ŻUR L, JANEK J, SOŁTYS M, et al. Structural and optical investigations of rare earth doped lead‑free germanate glasses modified by MO and MF2 (M= Ca, Sr, Ba) [J]. J. Non‑Cryst. Solids, 2016, 431: 145-149. doi: 10.1016/j.jnoncrysol.2015.03.008http://dx.doi.org/10.1016/j.jnoncrysol.2015.03.008
HOLZWARTH U, GIBSON N. The Scherrer equation versus the ‘Debye‑Scherrer equation’ [J]. Nat. Nanotechnol., 2011, 6(9): 534. doi: 10.1038/nnano.2011.145http://dx.doi.org/10.1038/nnano.2011.145
ZHANG J, ZHAI Z Y, HUA Z H. Investigations on luminescence of Ca8MgGd(PO4)7∶Eu2+, Mn2+, Yb3+, Er3+, Ho3+, Tm3+ phosphors [J]. Mater. Res. Bull., 2016, 74: 34-40. doi: 10.1016/j.materresbull.2015.10.019http://dx.doi.org/10.1016/j.materresbull.2015.10.019
HUANG B H, ZHANG B, QIAN X B, et al. Effects of Er3+ concentration on upconversion luminescence and temperature sensing properties in Bi4Ge3O12 crystal [J]. J. Alloys Compd., 2021, 853: 156970-1-7. doi: 10.1016/j.jallcom.2020.156970http://dx.doi.org/10.1016/j.jallcom.2020.156970
TIAN X N, DOU H J, WU L Y. Photoluminescence and thermometry properties of upconversion phosphor NaBiF4∶Yb3+/Tm3+ [J]. Opt. Mater., 2020, 99: 109544-1-6. doi: 10.1016/j.optmat.2019.109544http://dx.doi.org/10.1016/j.optmat.2019.109544
BOMMAREDDI R R. Applications of optical interferometer techniques for precision measurements of changes in temperature, growth and refractive index of materials [J]. Technologies, 2014, 2(2): 54-75. doi: 10.3390/technologies2020054http://dx.doi.org/10.3390/technologies2020054
KOCHANOWICZ M, DOROSZ D, ZMOJDA J, et al. Influence of temperature on upconversion luminescence in tellurite glass co‑doped with Yb3+/Er3+and Yb3+/Tm3+ [J]. J. Lumin., 2014, 151: 155-160. doi: 10.1016/j.jlumin.2014.02.012http://dx.doi.org/10.1016/j.jlumin.2014.02.012
SUN Z, LIU G F, FU Z L, et al. Nanostructured La2O3∶Yb3+/Er3+: temperature sensing, optical heating and bio-imaging application [J]. Mater. Res. Bull., 2017, 92: 39-45. doi: 10.1016/j.materresbull.2017.04.005http://dx.doi.org/10.1016/j.materresbull.2017.04.005
KALINICHEV A A, KUROCHKIN M A, KOLOMYTSEV A Y, et al. Yb3+/Er3+‑codoped GeO2‑PbO‑PbF2 glass ceramics for ratiometric upconversion temperature sensing based on thermally and non‑thermally coupled levels [J]. Opt. Mater., 2019, 90: 200-207. doi: 10.1016/j.optmat.2019.02.035http://dx.doi.org/10.1016/j.optmat.2019.02.035
MARCINIAK L, WASZNIEWSKA K, BEDNARKIEWICZ A, et al. Sensitivity of a nanocrystalline luminescent thermometer in high and low excitation density regimes [J]. J. Phys. Chem. C, 2016, 120(16): 8877-8882. doi: 10.1021/acs.jpcc.6b01636http://dx.doi.org/10.1021/acs.jpcc.6b01636
DRAMIĆANIN M D. Sensing temperature via downshifting emissions of lanthanide‑doped metal oxides and salts. A review [J]. Methods Appl. Fluoresc., 2016, 4(4): 042001. doi: 10.1088/2050-6120/4/4/042001http://dx.doi.org/10.1088/2050-6120/4/4/042001
CHEN S Y Z, SONG W H, CAO J K, et al. Highly sensitive optical thermometer based on FIR technique of transparent NaY2F7∶Tm3+/Yb3+ glass ceramic [J]. J. Alloys Compd., 2020, 825: 154011-1-6. doi: 10.1016/j.jallcom.2020.154011http://dx.doi.org/10.1016/j.jallcom.2020.154011
CHEN W P, HU F F, WEI R F, et al. Optical thermometry based on up-conversion luminescence of Tm3+ doped transparent Sr2YF7 glass ceramics [J]. J. Lumin., 2017, 192: 303-309. doi: 10.1016/j.jlumin.2017.07.002http://dx.doi.org/10.1016/j.jlumin.2017.07.002
0
浏览量
178
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构