浏览全部资源
扫码关注微信
1.长春工业大学 材料科学与工程学院, 吉林 长春 130012
2.长春工业大学 材料科学高等研究院, 吉林 长春 130012
[ "崔文豪(1997-),男,山东日照人,硕士研究生,2019年于北华大学获得学士学位,主要从事稀土掺杂发光纳米材料物理及应用的研究。E‐mail:812913377@qq.com" ]
[ "彭亚茹(1979-),女,吉林白城人,硕士,实验师,2008年于吉林大学获得硕士学位,主要从事纳米发光材料的研究。E-mail: pengyaru@ccut.edu.cn" ]
[ "李静(1986-),女,河北衡水人,博士,副教授,2014年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事稀土掺杂发光材料物理及应用的研究。Email:lij@ccut.edu.cn" ]
纸质出版日期:2023-02-05,
收稿日期:2022-09-15,
修回日期:2022-09-28,
移动端阅览
崔文豪,彭亚茹,李静等.808 nm/980 nm 近红外光激发下CaSc2O4∶Er, Nd纳米晶的上转换发光特性[J].发光学报,2023,44(02):289-297.
CUI Wenhao,PENG Yaru,LI Jing,et al.Upconversion Luminescence of CaSc2O4∶Er, Nd Nanocrystals Under 808 nm/980 nm Near Infrared Excitation[J].Chinese Journal of Luminescence,2023,44(02):289-297.
崔文豪,彭亚茹,李静等.808 nm/980 nm 近红外光激发下CaSc2O4∶Er, Nd纳米晶的上转换发光特性[J].发光学报,2023,44(02):289-297. DOI: 10.37188/CJL.20220336.
CUI Wenhao,PENG Yaru,LI Jing,et al.Upconversion Luminescence of CaSc2O4∶Er, Nd Nanocrystals Under 808 nm/980 nm Near Infrared Excitation[J].Chinese Journal of Luminescence,2023,44(02):289-297. DOI: 10.37188/CJL.20220336.
通过水热法合成了一系列CaSc
2
O
4
∶Er
3+
,Nd
3+
纳米晶。随着Nd
3+
浓度和激发波长的变化,详细研究了CaSc
2
O
4
∶Er
3+
,Nd
3+
氧化物在可见光和近红外(NIR)区域的发光特性。在808 nm激发下,Er
3+
离子的发光强度随着Nd
3+
离子浓度的增加出现增强。相对的红色强度也有轻微的增强。在980 nm激发下,Nd
3+
离子几乎不吸收980 nm的光子,只有Er
3+
离子的吸收和发射被发现。相对的红色强度没有变化。此外,在近红外光谱中,只观察到Er
3+
离子的发射,这与可见光光谱一致。详细的研究揭示了新型CaSc
2
O
4
∶Er
3+
,Nd
3+
纳米晶在808 nm和980 nm近红外激发下的上转换发光(UCL)机制。
A series of CaSc
2
O
4
∶Er
3+
,Nd
3+
nanocrystals were synthesized by the hydrothermal method. The luminescence properties of the CaSc
2
O
4
∶Er
3+
,Nd
3+
oxide crystals in the visible-light and near infrared (NIR) regions were investigated in detail as the Nd
3+
concentrations and excited wavelengths vary. Under 808 nm excitation, the luminescence intensity of Er
3+
ions appears to be enhanced as the concentration of Nd
3+
ions increase. The relative red intensity also has the slight enhancement. Under 980 nm excitation, Nd
3+
ions hardly absorb 980 nm photons, only the absorption and emission of Er
3+
ions are found. The relative red intensity has no change. Furthermore, only the emission of Er
3+
ion was observed in NIR spectrum, which is consist as the visible spectrum. The detailed study reveals the possible upconversion luminescence (UCL) mechanism involved in a novel CaSc
2
O
4
∶Er
3+
,Nd
3+
nanocrystals under 808 nm and 980 nm NIR excitation.
上转换发光Nd3+ 离子Er3+离子CaSc2O4 纳米晶近红外激发
upconversion luminescence (UCL)Nd3+ ionsEr3+ ionsCaSc2O4nanocrystalsnear infrared (NIR) excitation
HAASE M, SCHÄFER H. Upconverting nanoparticles [J]. Angew. Chem. Int. Ed., 2011, 50(26): 5808-5829. doi: 10.1002/anie.201005159http://dx.doi.org/10.1002/anie.201005159
ZHOU B, SHI B Y, JIN D Y, et al. Controlling upconversion nanocrystals for emerging applications [J]. Nat. Nanotechnol., 2015, 10(11): 924-936. doi: 10.1038/nnano.2015.251http://dx.doi.org/10.1038/nnano.2015.251
WANG Y, ZHENG K Z, SONG S Y, et al. Remote manipulation of upconversion luminescence [J]. Chem. Soc. Rev., 2018, 47(17): 6473-6485. doi: 10.1039/c8cs00124chttp://dx.doi.org/10.1039/c8cs00124c
XIANG G T, XIA Q, LIU X T, et al. Upconversion nanoparticles modified by Cu2S for photothermal therapy along with real‐time optical thermometry [J]. Nanoscale, 2021, 13(15): 7161-7168. doi: 10.1039/d0nr09115dhttp://dx.doi.org/10.1039/d0nr09115d
JIA Z W, YUAN C X, LIU Y F, et al. Strategies to approach high performance in Cr3+‑doped phosphors for high‑power NIR‐LED light sources [J]. Light Sci. Appl., 2020, 9: 86-1-9. doi: 10.1038/s41377-020-0326-8http://dx.doi.org/10.1038/s41377-020-0326-8
ZHANG C, YANG L, ZHAO J, et al. White‐light emission from an integrated upconversion nanostructure: toward multicolor displays modulated by laser power [J]. Angew. Chem. Int. Ed., 2015, 54(39): 11531-11535. doi: 10.1002/anie.201504518http://dx.doi.org/10.1002/anie.201504518
LIU S, PAN X T, LIU H Y. Two‑dimensional nanomaterials for photothermal therapy [J]. Angew. Chem. Int. Ed., 2020, 59(15): 5890-5900. doi: 10.1002/anie.201911477http://dx.doi.org/10.1002/anie.201911477
WANG F, WEN S H, HE H, et al. Microscopic inspection and tracking of single upconversion nanoparticles in living cells [J]. Light Sci. Appl., 2018, 7: 18007-1-6. doi: 10.1038/lsa.2018.7http://dx.doi.org/10.1038/lsa.2018.7
JALANI G, TAM V, VETRONE F, et al. Seeing, targeting and delivering with upconverting nanoparticles [J]. J. Am. Chem. Soc., 2018, 140(35): 10923-10931. doi: 10.1021/jacs.8b03977http://dx.doi.org/10.1021/jacs.8b03977
DUBEY A, SONI A K, KUMARI A, et al. Enhanced green upconversion emission in NaYF4∶Er3+/Yb3+/Li+ phosphors for optical thermometry [J]. J. Alloys Compd., 2017, 693: 194-200. doi: 10.1016/j.jallcom.2016.09.154http://dx.doi.org/10.1016/j.jallcom.2016.09.154
DEBASU M L, ANANIAS D, PASTORIZA-SANTOS I, et al. All‑in‑one optical heater‑thermometer nanoplatform operative from 300 to 2 000 K based on Er3+ emission and blackbody radiation [J]. Adv. Mater., 2013, 25(35): 4868-4874. doi: 10.1002/adma.201300892http://dx.doi.org/10.1002/adma.201300892
ZHENG B Z, FAN J Y, CHEN B, et al. Rare‑earth doping in nanostructured inorganic materials [J]. Chem. Rev., 2022, 122(6): 5519-5603. doi: 10.1021/acs.chemrev.1c00644http://dx.doi.org/10.1021/acs.chemrev.1c00644
QI C Y, CHEN L, GAO Y, et al. Digestive ripening‑mediated growth of NaYbF4∶Tm@NaYF4 core‑shell nanoparticles for bioimaging [J]. ACS Appl. Nano Mater., 2020, 3(10): 10049-10056. doi: 10.1021/acsanm.0c02057http://dx.doi.org/10.1021/acsanm.0c02057
相国涛, 刘小桐, 夏清, 等. β‑NaYF4∶Yb3+/Er3+@β‑NaYF4∶Yb3+的上转换发光特性 [J]. 发光学报, 2020, 41(6): 679-683.
XIANG G T, LIU X T, XIA Q, et al. Upconversion luminescence properties of β‑NaYF4∶Yb3+/Er3+@β‑NaYF4∶Yb3+ [J]. Chin. J. Lumin., 2020, 41(6): 679-683. (in Chinese)
杨飘萍, 盖世丽, 贺飞. 稀土上转换发光材料 [M]. 北京: 科学出版社, 2018.
YANG P P, GAI S L, HE F. Rare Earth Upcooversion Luminescemt Materals [M]. Beijing: Science Press, 2018. (in Chinese)
WEI T, HAN Y D, WEI Y, et al. CaSc2O4 hosted upconversion and downshifting luminescence [J]. J. Mater. Chem. C, 2021, 9(11): 3800-3805. doi: 10.1039/d1tc00239bhttp://dx.doi.org/10.1039/d1tc00239b
袁美娟, 李静, 秦慧连, 等. 碱金属共掺MgSc2O4∶Er3+/Yb3+纳米晶的上转换发光性能 [J]. 发光学报, 2020, 41(11): 1351-1357. doi: 10.37188/CJL.20200294http://dx.doi.org/10.37188/CJL.20200294
YUAN M J, LI J, QIN H L, et al. Upconversion luminescence of MgSc2O4∶Er3+/Yb3+ nanocrystals co‑doped alkali ions [J]. Chin. J. Lumin., 2020, 41(11): 1351-1357. (in Chinese). doi: 10.37188/CJL.20200294http://dx.doi.org/10.37188/CJL.20200294
WANG Y G, WEN T, ZHANG H N, et al. Low‐temperature fluorination route to lanthanide‑doped monoclinic ScOF host material for tunable and nearly single band up‐conversion luminescence [J]. J. Phys. Chem. C, 2014, 118(19): 10314-10320. doi: 10.1021/jp5020274http://dx.doi.org/10.1021/jp5020274
XIANG G T, XIA Q, XU S, et al. Multipath optical thermometry realized in CaSc2O4∶Yb3+/Er3+ with high sensitivity and superior resolution [J]. J. Am. Ceram. Soc., 2021, 104(6): 2711-2720. doi: 10.1111/jace.17686http://dx.doi.org/10.1111/jace.17686
LI J, ZHANG J H, HAO Z D, et al. Spectroscopic properties and upconversion studies in Ho3+/Yb3+ Co‐doped calcium scandate with spectrally pure green emission [J]. ChemPhysChem, 2013, 14(18): 4114-4120. doi: 10.1002/cphc.201300842http://dx.doi.org/10.1002/cphc.201300842
LI J, ZHANG J H, HAO Z D, et al. Intense upconversion luminescence of CaSc2O4∶Ho3+/Yb3+ from large absorption cross section and energy‑transfer rate of Yb3+ [J]. ChemPhysChem, 2015, 16(7): 1366-1369. doi: 10.1002/cphc.201500011http://dx.doi.org/10.1002/cphc.201500011
GEORGESCU Ş, ŞTEFAN A, TOMA O. Judd‑Ofelt and energy‑transfer analysis of Er3+ doped in CaSc2O4 ceramic samples [J]. J. Lumin., 2015, 167: 186-192. doi: 10.1016/j.jlumin.2015.06.028http://dx.doi.org/10.1016/j.jlumin.2015.06.028
SHI Y C, YUAN M J, LI J, et al. Upconversion properties and temperature‑sensing behaviors of alkaline‑earth‑metal scandate nanocrystals doped with Er3+/Yb3+ ions in the presence of alkali ions (Li+, Na+, and K+) [J]. Inorg. Chem., 2022, 61(13): 5309-5317. doi: 10.1021/acs.inorgchem.1c04041http://dx.doi.org/10.1021/acs.inorgchem.1c04041
ŞTEFAN A, TOMA O, GEORGESCU Ş. Upconversion luminescence in CaSc2O4 doped with Er3+ and Yb3+ [J]. J. Lumin., 2016, 180: 376-383. doi: 10.1016/j.jlumin.2016.04.042http://dx.doi.org/10.1016/j.jlumin.2016.04.042
周慧丽, 吴锋, 张志宏, 等. Lu2O3∶Er3+/Yb3+荧光材料的上转换发光及其温度传感特性 [J]. 发光学报, 2022, 43(2): 192-200. doi: 10.37188/cjl.20210363http://dx.doi.org/10.37188/cjl.20210363
ZHOU H L, WU F, ZHANG Z H, et al. Upconversion luminescence and temperature sensing characteristics of Lu2O3∶Er3+/Yb3+ phosphor [J]. Chin. J. Lumin., 2022, 43(2): 192-200. (in Chinese). doi: 10.37188/cjl.20210363http://dx.doi.org/10.37188/cjl.20210363
SHEN J, CHEN G Y, VU A M, et al. Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri‑doped upconversion colloidal nanoparticles at 800 nm [J]. Adv. Opt. Mater., 2013, 1(9): 644-650. doi: 10.1002/adom.201300160http://dx.doi.org/10.1002/adom.201300160
ZHONG Y T, TIAN G, GU Z J, et al. Elimination of photon quenching by a transition layer to fabricate a quenching‑shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+‑sensitized nanoparticles [J]. Adv. Mater., 2014, 26(18): 2831-2837. doi: 10.1002/adma.201304903http://dx.doi.org/10.1002/adma.201304903
BAI G X, TAO L L, LI K F, et al. Enhanced light emission near 2.7 μm from Er‑Nd co‑doped germanate glass [J]. Opt. Mater., 2013, 35(6): 1247-1250. doi: 10.1016/j.optmat.2013.01.017http://dx.doi.org/10.1016/j.optmat.2013.01.017
SHEN X, NIE Q H, XU T F, et al. Investigation on energy transfer from Er3+ to Nd3+ in tellurite glass [J]. J. Rare Earths, 2008, 26(6): 899-903. doi: 10.1016/s1002-0721(09)60029-6http://dx.doi.org/10.1016/s1002-0721(09)60029-6
SARDAR D K, CHANDRA S, GRUBER J B, et al. Preparation and spectroscopic characterization of Nd3+∶Y2O3 nanocrystals suspended in polymethyl methacrylate [J]. J. Appl. Phys., 2009, 105(9): 093105-1-8. doi: 10.1063/1.3122300http://dx.doi.org/10.1063/1.3122300
DAN H K, ZHOU D C, YANG Z W, et al. Optimizing Nd/Er ratio for enhancement of broadband near‑infrared emission and energy transfer in the Er3+‑Nd3+ co‑doped transparent silicate glass‑ceramics [J]. J. Non‑Cryst. Solids, 2015, 414: 21-26. doi: 10.1016/j.jnoncrysol.2015.02.001http://dx.doi.org/10.1016/j.jnoncrysol.2015.02.001
ZHANG W, WANG Y, LI J F, et al. Spectroscopic analyses and laser properties simulation of Er/Yb, Er/Nd, Er/Dy∶ BaLaGa3O7 crystals [J]. J. Lumin., 2019, 208: 259-266. doi: 10.1016/j.jlumin.2018.12.061http://dx.doi.org/10.1016/j.jlumin.2018.12.061
RAKOV N, XING Y T, MACIEL G S. Optical thermometry operation within all three biological windows using Nd3+∶Er3+∶ Y2O3 nanocomposite phosphors [J]. ACS Appl. Nano Mater., 2020, 3(10): 10479-10486. doi: 10.1021/acsanm.0c02397http://dx.doi.org/10.1021/acsanm.0c02397
POLLNAU M, GAMELIN D R, LÜTHI S R, et al. Power dependence of upconversion luminescence in lanthanide and transition‐metal‐ion systems [J]. Phys. Rev. B, 2000, 61(5): 3337-3346. doi: 10.1103/physrevb.61.3337http://dx.doi.org/10.1103/physrevb.61.3337
LI F, LI J, CHEN L, et al. Hydrothermal synthesis and upconversion properties of about 19 nm Sc2O3∶Er3+,Yb3+ nanoparticles with detailed investigation of the energy transfer mechanism [J]. Nanoscale Res. Lett., 2018, 13(1): 372-1-9. doi: 10.1186/s11671-018-2794-9http://dx.doi.org/10.1186/s11671-018-2794-9
0
浏览量
258
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构