浏览全部资源
扫码关注微信
1.淮阴工学院 数理学院, 江苏 淮安 223003
2.东南大学 生物科学与医学工程学院, 江苏 南京 210096
[ "林毅(1986-),男,江苏淮安人,博士,讲师,2015年于东南大学获得博士学位,主要从事半导体光电材料与器件方面的研究。" ]
[ "徐春祥(1965-),男,江苏兴化人,博士,教授,博士生导师,1997年于中国科学院长春物理研究所获得博士学位,主要从事纳米光电功能材料与器件及其生物医学的功能应用的研究。" ]
纸质出版日期:2022-12-05,
收稿日期:2022-09-13,
修回日期:2022-09-22,
移动端阅览
林毅,周雷,范宝路等.高稳定性ZnO∶Ga/InGaN异质结微型绿光发光二极管[J].发光学报,2022,43(12):1965-1973.
LIN Yi,ZHOU Lei,FAN Bao-lu,et al.High Stable Micro Green Light-emitting Diodes Based on ZnO∶Ga/InGaN Heterojunction[J].Chinese Journal of Luminescence,2022,43(12):1965-1973.
林毅,周雷,范宝路等.高稳定性ZnO∶Ga/InGaN异质结微型绿光发光二极管[J].发光学报,2022,43(12):1965-1973. DOI: 10.37188/CJL.20220331.
LIN Yi,ZHOU Lei,FAN Bao-lu,et al.High Stable Micro Green Light-emitting Diodes Based on ZnO∶Ga/InGaN Heterojunction[J].Chinese Journal of Luminescence,2022,43(12):1965-1973. DOI: 10.37188/CJL.20220331.
绿光光源可广泛应用于固态照明、可见光通信、电子显示、光遗传学等领域。相比于蓝光LED,高性能低维绿色发光器件的设计与制备受限于绿光效率低(Green gap)和高注入电流下效率下降(Efficiency droop)两个主要问题的困扰。本文采用化学气相沉积方法(CVD)生长镓掺杂的氧化锌微米线(ZnO∶Ga MW),结合p型InGaN衬底制备了n‐ZnO∶Ga MW/p‐InGaN异质结发光二极管。该器件的输出波长为540 nm,半峰宽约为32 nm,在相对较大的注入电流下,器件发光峰位、半峰宽等发光特征参数没有明显的变化,且相对外量子效率(REQE)在较大电流下呈现出相对较小的下降,体现了较高的发光稳定性。此外,利用金纳米薄膜改善了ZnO∶Ga微米线与InGaN衬底间的接触,实现了结区界面的优化,成功提高了发光二极管的发光强度。实验结果表明,采用n‐ZnO∶Ga微米线结合p‐InGaN衬底构筑的异质结可用于制备高稳定性高亮度的微型绿光发光二极管。
Light sources with wavelengths in the green region are very important for a wide gamut of applications, including solid-state lighting, visible light communications, agriculture, optogenetics, and so on. Compared to blue light-emitting diodes(LEDs), the fabrication of high-performance low-dimensional green LED has long been limited by “Green gap” and “Efficiency droop”. In this work, a kind of green LED composed of p-type InGaN layers and a single Ga doped ZnO microwire(ZnO∶Ga MW) was designed. The experiment results indicated that this LED device had a central wavelength located at 540 nm and a linewidth of about 32 nm. Most important of all, increasing the operating current at high level, no noticeable variations in the electroluminescence characteristics and relative external quantum efficiency(REQE) could be observed. Additionally, a cladding of Au nanofilm was introduced on the surface of microwire to optimize the interface quality of n-ZnO∶Ga MW/p-InGaN heterojunction, resulting in the better uniform contact between ZnO∶Ga and InGaN, and the higher output intensity. This work demonstrates that such heterojunction composed of n- ZnO∶Ga and p-InGaN is a promising candidate for fabricating a new generation of high-brightness microscale green LEDs.
绿光发光二极管金纳米薄膜镓掺杂氧化锌微米线铟镓氮相对外量子效率
green LEDAu nano-filmGa doped ZnO microwireInGaNrelative external quantum efficiency(REQE)
杨杰, 朱邵歆, 闫建昌, 等. 载流子复合机制对InGaN多量子阱蓝光LED调制带宽的影响 [J]. 发光学报, 2018, 39(2): 202-207. doi: 10.3788/fgxb20183902.0202http://dx.doi.org/10.3788/fgxb20183902.0202
YANG J, ZHU S X, YAN J C, et al. Effect of carrier recombination mechanism on modulation bandwidth of InGaN multiple-quantum-wells blue light emitting diodes [J]. Chin. J. Lumin., 2018, 39(2): 202-207. (in Chinese). doi: 10.3788/fgxb20183902.0202http://dx.doi.org/10.3788/fgxb20183902.0202
ZHU J, CHU C C, LI D S, et al. Fe(Ⅲ)-porphyrin sonotheranostics: a green triple-regulated ROS generation nanoplatform for enhanced cancer imaging and therapy [J]. Adv. Funct. Mater., 2019, 29(36): 1904056-1-10.
卢允乐, 文尚胜, 马丙戌, 等. 具有曲面反射面的高均匀度LED植物光源 [J]. 发光学报, 2020, 41(4): 468-479. doi: 10.3788/fgxb20204104.0468http://dx.doi.org/10.3788/fgxb20204104.0468
LU Y L, WEN S S, MA B X, et al. Highly uniform LED plant light source with curved reflective surface [J]. Chin. J. Lumin., 2020, 41(4): 468-479. (in Chinese). doi: 10.3788/fgxb20204104.0468http://dx.doi.org/10.3788/fgxb20204104.0468
RA Y H, RASHID R T, LIU X H, et al. An electrically pumped surface-emitting semiconductor green laser [J]. Sci. Adv., 2020, 6(1): eaav7523-1-8.
ZHAO T, LIU H B, ZIFFER M E, et al. Realization of a highly oriented MAPbBr3 perovskite thin film via ion exchange for ultrahigh color purity green light emission [J]. ACS Energy Lett., 2018, 3(7): 1662-1669.
BI Z X, LENRICK F, COLVIN J, et al. InGaN platelets: synthesis and applications toward green and red light-emitting diodes [J]. Nano Lett., 2019, 19(5): 2832-2839.
ZHAO C Y, TANG C W, LAI B, et al. Low-efficiency-droop InGaN quantum dot light-emitting diodes operating in the “green gap” [J]. Photonics Res., 2020, 8(5): 750-754.
SEINO Y, INOMATA S, SASABE H, et al. High-performance green OLEDs using thermally activated delayed fluorescence with a power efficiency of over 100 lm·W-1 [J]. Adv. Mater., 2016, 28(13): 2638-2643. doi: info:doi/10.1002/adma.201503782http://dx.doi.org/info:doi/10.1002/adma.201503782
WANG L, WANG X, BERTRAM F, et al. Color-tunable 3D InGaN/GaN multi-quantum-well light-emitting-diode based on microfacet emission and programmable driving power supply [J]. Adv. Opt. Mater., 2021, 9(1): 2001400-1-9.
ZHAO X Y, TANG B, GONG L Y, et al. Rational construction of staggered InGaN quantum wells for efficient yellow light-emitting diodes [J]. Appl. Phys. Lett., 2021, 118(18): 182102.
BAI J, CAI Y F, FENG P, et al. A direct epitaxial approach to achieving ultrasmall and ultrabright InGaN micro light-emitting diodes (μLEDs) [J]. ACS Photonics, 2020, 7(2): 411-415.
ZHANG G G, GUO X, REN F F, et al. High-brightness polarized green InGaN/GaN light-emitting diode structure with Al-coated p-GaN grating [J]. ACS Photonics, 2016, 3(10): 1912-1918. doi: 10.1021/acsphotonics.6b00433http://dx.doi.org/10.1021/acsphotonics.6b00433
RA Y H, LEE C R. Understanding the p-type GaN nanocrystals on InGaN nanowire heterostructures [J]. ACS Photonics, 2019, 6(10): 2397-2404.
WANG L, WANG L, CHEN C J, et al. Green InGaN quantum dots breaking through efficiency and bandwidth bottlenecks of micro-LEDs [J]. Laser Photonics Rev., 2021, 15(5): 2000406-1-9.
YAN D D, ZHAO S Y, WANG H X, et al. Ultrapure and highly efficient green light emitting devices based on ligand-modified CsPbBr3 quantum dots [J]. Photonics Res., 2020, 8(7): 1086-1092.
BEHERA R K, ADHIKARI S D, DUTTA S K, et al. Blue-emitting CsPbCl3 nanocrystals: impact of surface passivation for unprecedented enhancement and loss of optical emission [J]. J. Phys. Chem. Lett., 2018, 9(23): 6884-6891.
TCHOE Y, LEE C H, PARK J B, et al. Microtube light-emitting diode arrays with metal cores [J]. ACS Nano, 2016, 10(3): 3114-3120.
CHEN M X, PAN C F, ZHANG T P, et al. Tuning light emission of a pressure-sensitive silicon/ZnO nanowires heterostructure matrix through piezo-phototronic effects [J]. ACS Nano, 2016, 10(6): 6074-6079.
JIANG M M, HE G H, CHEN H Y, et al. Wavelength-tunable electroluminescent light sources from individual Ga-doped ZnO microwires [J]. Small, 2017, 13(19): 1604034-1-43.
LIU Y, JIANG M M, HE G H, et al. Wavelength-tunable ultraviolet electroluminescence from Ga-doped ZnO microwires [J]. ACS Appl. Mater. Interfaces, 2017, 9(46): 40743-40751.
YUAN G D, ZHANG W J, JIE J S, et al. Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays [J]. Adv. Mater., 2008, 20(1): 168-173.
ZHANG X H, LI L Y, SU J, et al. Bandgap engineering of GaxZn1-xO nanowire arrays for wavelength-tunable light-emitting diodes [J]. Laser Photonics Rev., 2014, 8(3): 429-435.
DAI J, XU C X, SUN X W. ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes [J]. Adv. Mater., 2011, 23(35): 4115-4119.
JIANG M M, TANG K, WAN P, et al. A single microwire near-infrared exciton-polariton light-emitting diode [J]. Nanoscale, 2021, 13(3): 1663-1672.
LI H J, KHOURY M, BONEF B, et al. Efficient semipolar (11-22) 550 nm yellow/green InGaN light-emitting diodes on low defect density (11-22) GaN/sapphire templates [J]. ACS Appl. Mater. Interfaces, 2017, 9(41): 36417-36422.
GRIFFITHS J T, ZHANG S Y, ROUET-LEDUC B, et al. Nanocathodoluminescence reveals mitigation of the stark shift in InGaN quantum wells by Si doping [J]. Nano Lett., 2015, 15(11): 7639-7643.
LV Q J, LIU J L, MO C L, et al. Realization of highly efficient InGaN green LEDs with sandwich-like multiple quantum well structure: role of enhanced interwell carrier transport [J]. ACS Photonics, 2019, 6(1): 130-138.
PRAJAPATI K N, JOHNS B, BANDOPADHYAY K, et al. Interaction of ZnO nanorods with plasmonic metal nanoparticles and semiconductor quantum dots [J]. J. Chem. Phys., 2020, 152(6): 064704-1-10.
MISHRA S M, SATPATI B. Morphology of ZnO nanorods and Au-ZnO heterostructures on different seed layers and their influence on the optical behavior [J]. J. Lumin., 2022, 246: 118813.
PAL S, BARIK P, PRADHAN M. Tunable Plasmon assisted enhancement of green light emission from ZnO nanoparticles [J]. Mater. Today Commun., 2021, 28: 102713.
0
浏览量
276
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构