浏览全部资源
扫码关注微信
华南理工大学 发光材料与器件国家重点实验室, 广东 广州 510640
[ "牛泉,女,博士,教授,博士生导师,2017年于德国马克斯普朗克高分子研究所获得博士学位,主要从事光电半导体与器件物理学,包括有机半导体电荷传输与复合机制、电荷陷阱效应与缺陷本质、器件稳定性机制与大面积低成本发光显示器件的应用性 研究。" ]
纸质出版日期:2023-01-05,
收稿日期:2022-08-30,
修回日期:2022-09-15,
移动端阅览
牛泉,郝洪敏,林雯欣等.有机发光二极管老化机制[J].发光学报,2023,44(01):186-197.
NIU Quan,HAO Hongmin,LIN Wenxin,et al.Degradation Mechanism of Organic Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(01):186-197.
牛泉,郝洪敏,林雯欣等.有机发光二极管老化机制[J].发光学报,2023,44(01):186-197. DOI: 10.37188/CJL.20220317.
NIU Quan,HAO Hongmin,LIN Wenxin,et al.Degradation Mechanism of Organic Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(01):186-197. DOI: 10.37188/CJL.20220317.
有机发光二极管(OLEDs)因在照明和显示领域的巨大潜在应用备受人们关注。在过去的三十年里,OLED器件的效率和寿命有了很大的提高,但对于商业应用而言提高器件寿命仍然是亟待解决的问题之一。为了进一步提升器件稳定性,则需要深入地研究OLED内部存在的老化机理。本文以小分子和聚合物OLEDs为例,综述了两种器件的老化机制。概括了OLED的一些外在和内在老化机制,并介绍了小分子和聚合物OLEDs老化机理的研究进展。对于小分子OLEDs,有研究提出其老化机理是激子与极化子的相互作用,形成陷阱导致器件老化。另一种理论认为激子与极化子的作用诱导分子聚集,促进界面老化。而对于聚合物OLEDs老化机理是激子与空穴相互作用,诱导空穴陷阱产生,导致了亮度、效率损失和驱动电压上升的现象。同时综述了目前一部分延长器件寿命的方案,为后续开发效率更高、寿命更长的OLED器件提供积极作用。
Organic light-emitting diodes (OLEDs) have attracted much attention due to their huge potential applications in the field of lighting and display. In the past three decades, the efficiency and lifetime of OLED devices have been greatly improved. However, improving device lifetime is still one of the urgent problems to be solved for commercial applications. In order to further improve the stability of the device, it is necessary to study the intrinsic degradation mechanism intensively. In this paper, using examples in both small molecule and polymer OLEDs, the degradation mechanisms in two types of devices are examined. Some of the extrinsic and intrinsic degradation mechanisms in OLEDs are reviewed, and recent works on degradation studies of both small-molecule and polymer OLEDs are presented. For small-molecule OLEDs, some studies show that the degradation of devices is consistent with defect formation due primarily to exciton-polaron annihilation reactions, others show that degradation is closely linked to interactions between excitons and positive polarons, which lead to its aggregation near the interface and thus destroy the interface. For polymer OLEDs, the luminance loss and voltage rise dependence on time and current density are consistent with hole trap formation due to exciton-free hole interactions. Meanwhile, this paper summarizes some current effective solutions to increase the lifetime, which will play a positive role in the subsequent development of OLED devices with higher efficiency and longer lifetime.
有机发光二极管退化机制器件寿命稳定性
organic light-emitting diodesdegradation mechanismdevice lifetimestability
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
BURROUGHES J H, BRADLEY D D C, BROWN A R, et al. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347(6293): 539-541. doi: 10.1038/347539a0http://dx.doi.org/10.1038/347539a0
KOTADIYA N B, BLOM P W M, WETZELAER G J A H. Efficient and stable single-layer organic light-emitting diodes based on thermally activated delayed fluorescence [J]. Nat. Photonics, 2019, 13(11): 765-769. doi: 10.1038/s41566-019-0488-1http://dx.doi.org/10.1038/s41566-019-0488-1
CIARNÁIN RMAC, MO H W, NAGAYOSHI K, et al. A thermally activated delayed fluorescence green OLED with 4 500 h lifetime and 20% external quantum efficiency by optimizing the emission zone using a single-emission spectrum technique [J]. Adv. Mater., 2022, 34(29): 2201409-1-14. doi: 10.1002/adma.202201409http://dx.doi.org/10.1002/adma.202201409
CHAN C Y, TANAKA M, LEE Y T, et al. Stable pure-blue hyperfluorescence organic light-emitting diodes with high- efficiency and narrow emission [J]. Nat. Photonics, 2021, 15(3): 203-207. doi: 10.1038/s41566-020-00745-zhttp://dx.doi.org/10.1038/s41566-020-00745-z
LEE J, CHEN H F, BATAGODA T, et al. Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency [J]. Nat. Mater., 2016, 15(1): 92-98. doi: 10.1038/nmat4446http://dx.doi.org/10.1038/nmat4446
JEON S O, LEE K H, KIM J S, et al. High-efficiency, long-lifetime deep-blue organic light-emitting diodes [J]. Nat. Photonics, 2021, 15(3): 208-215. doi: 10.1038/s41566-021-00763-5http://dx.doi.org/10.1038/s41566-021-00763-5
AZIZ H, POPOVIC Z D. Degradation phenomena in small-molecule organic light-emitting devices [J]. Chem. Mater., 2004, 16(23): 4522-4532. doi: 10.1021/cm040081ohttp://dx.doi.org/10.1021/cm040081o
SASAKI T, FUKAGAWA H, OONO T, et al. 61-3: demonstration of long-term stable emission from inverted OLED with imperfect encapsulation [J]. SID Int. Symp. Digest Tech. Papers, 2018, 49(1): 811-814. doi: 10.1002/sdtp.12276http://dx.doi.org/10.1002/sdtp.12276
LIM S F, WANG W, CHUA S J. Degradation of organic light-emitting devices due to formation and growth of dark spots [J]. Mater. Sci. Eng. B, 2001, 85(2-3): 154-159. doi: 10.1016/s0921-5107(01)00599-2http://dx.doi.org/10.1016/s0921-5107(01)00599-2
SWAYAMPRABHA S S, DUBEY D K, SHAHNAWAZ, et al. Approaches for long lifetime organic light emitting diodes [J]. Adv. Sci., 2021, 8(1): 2002254-1-29. doi: 10.1002/advs.202002254http://dx.doi.org/10.1002/advs.202002254
LIEW Y F, AZIZ H, HU N X, et al. Investigation of the sites of dark spots in organic light-emitting devices [J]. Appl. Phys. Lett., 2000, 77(17): 2650-2652. doi: 10.1063/1.1320459http://dx.doi.org/10.1063/1.1320459
AZRAIN M M, MANSOR M R, FADZULLAH S H S M, et al. Analysis of mechanisms responsible for the formation of dark spots in organic light emitting diodes (OLEDs): a review [J]. Synth. Met., 2018, 235: 160-175. doi: 10.1016/j.synthmet.2017.12.011http://dx.doi.org/10.1016/j.synthmet.2017.12.011
AZIZ H, POPOVIC Z D, HU N X, et al. Degradation mechanism of small molecule-based organic light-emitting devices [J]. Science, 1999, 283(5409): 1900-1902. doi: 10.1126/science.283.5409.1900http://dx.doi.org/10.1126/science.283.5409.1900
KONDAKOV D Y, SANDIFER J R, TANG C W, et al. Nonradiative recombination centers and electrical aging of organic light-emitting diodes: direct connection between accumulation of trapped charge and luminance loss [J]. J. Appl. Phys., 2003, 93(2): 1108-1119. doi: 10.1063/1.1531231http://dx.doi.org/10.1063/1.1531231
KONDAKOV D Y. Direct observation of deep electron traps in aged organic light emitting diodes [J]. J. Appl. Phys., 2005, 97(2): 024503-1-5. doi: 10.1063/1.1835567http://dx.doi.org/10.1063/1.1835567
SONG W, LEE J Y. Degradation mechanism and lifetime improvement strategy for blue phosphorescent organic light-emitting diodes [J]. Adv. Opt. Mater., 2017, 5(9): 1600901. doi: 10.1002/adom.201600901http://dx.doi.org/10.1002/adom.201600901
YANG C Y, KANG S, JEONG H, et al. Key host parameters for long lifetimes in phosphorescent organic light-emitting diodes: bond dissociation energy in triplet excited state [J]. J. Mater. Chem. C, 2020, 8(5): 1697-1703. doi: 10.1039/c9tc05585ahttp://dx.doi.org/10.1039/c9tc05585a
TORDERA D, SERRANO-PÉREZ J J, PERTEGÁS A, et al. Correlating the lifetime and fluorine content of iridium(Ⅲ) emitters in green light-emitting electrochemical cells [J]. Chem. Mater., 2013, 25(16): 3391-3397. doi: 10.1021/cm402473jhttp://dx.doi.org/10.1021/cm402473j
KONDAKOV D Y, LENHART W C, NICHOLS W F. Operational degradation of organic light-emitting diodes: mechanism and identification of chemical products [J]. J. Appl. Phys., 2007, 101(2): 024512-1-7. doi: 10.1063/1.2430922http://dx.doi.org/10.1063/1.2430922
KONDAKOV D Y, PAWLIK T D, NICHOLS W F, et al. Free-radical pathways in operational degradation of OLEDs [J]. J. Soc. Inf. Disp., 2008, 16(1): 37-46. doi: 10.1889/1.2835032http://dx.doi.org/10.1889/1.2835032
SATO G, SON D, ITO T, et al. Direct observation of radical states and the correlation with performance degradation in organic light-emitting diodes during device operation [J]. Phys. Status Solidi (A), 2018, 215(7): 1700731-1-10. doi: 10.1002/pssa.201700731http://dx.doi.org/10.1002/pssa.201700731
DE MORAES I R, SCHOLZ S, LÜSSEM B, et al. Role of oxygen-bonds in the degradation process of phosphorescent organic light emitting diodes [J]. Appl. Phys. Lett., 2011, 99(5): 053302-1-3. doi: 10.1063/1.3617459http://dx.doi.org/10.1063/1.3617459
LIN N, QIAO J, DUAN L, et al. Achilles heels of phosphine oxide materials for OLEDs: chemical stability and degradation mechanism of a bipolar phosphine oxide/carbazole hybrid host material [J]. J. Phys. Chem. C, 2012, 116(36): 19451-19457. doi: 10.1021/jp305415xhttp://dx.doi.org/10.1021/jp305415x
LIN N, QIAO J, DUAN L, et al. Molecular understanding of the chemical stability of organic materials for OLEDs: a comparative study on sulfonyl, phosphine-oxide, and carbonyl-containing host materials [J]. J. Phys. Chem. C, 2014, 118(14): 7569-7578. doi: 10.1021/jp412614khttp://dx.doi.org/10.1021/jp412614k
HONG M, RAVVA M K, WINGET P, et al. Effect of substituents on the electronic structure and degradation process in carbazole derivatives for blue OLED host materials [J]. Chem. Mater., 2016, 28(16): 5791-5798. doi: 10.1021/acs.chemmater.6b02069http://dx.doi.org/10.1021/acs.chemmater.6b02069
SIVASUBRAMANIAM V, BRODKORB F, HANNING S, et al. Degradation of HTL layers during device operation in PhOLEDs [J]. Solid State Sci., 2009, 11(11): 1933-1940. doi: 10.1016/j.solidstatesciences.2009.07.017http://dx.doi.org/10.1016/j.solidstatesciences.2009.07.017
DONG S, XU L, TANG C W. Chemical degradation mechanism of TAPC as hole transport layer in blue phosphorescent OLED [J]. Org. Electron., 2017, 42: 379-386. doi: 10.1016/j.orgel.2016.11.041http://dx.doi.org/10.1016/j.orgel.2016.11.041
JEON S K, LEE J Y. Four times lifetime improvement of blue phosphorescent organic light-emitting diodes by managing recombination zone [J]. Org. Electron., 2015, 27: 202-206. doi: 10.1016/j.orgel.2015.09.016http://dx.doi.org/10.1016/j.orgel.2015.09.016
NAKASHIMA N, YOSHIHARA K. Role of hot molecules formed by internal conversion in UV single-photon and multiphoton chemistry [J]. J. Phys. Chem., 1989, 93(23): 7763-7771. doi: 10.1021/j100360a009http://dx.doi.org/10.1021/j100360a009
GIEBINK N C, D’ANDRADE B W, WEAVER M S, et al. Direct evidence for degradation of polaron excited states in organic light emitting diodes [J]. J. Appl. Phys., 2009, 105(12): 124514-1-7. doi: 10.1063/1.3151689http://dx.doi.org/10.1063/1.3151689
GIEBINK N C, D’ANDRADE B W, WEAVER M S, et al. Intrinsic luminance loss in phosphorescent small-molecule organic light emitting devices due to bimolecular annihilation reactions [J]. J. Appl. Phys., 2008, 103(4): 044509-1-9. doi: 10.1063/1.2884530http://dx.doi.org/10.1063/1.2884530
CHO Y J, ZHANG Y J, YU H, et al. The root causes of the limited stability of solution-coated small-molecule organic light-emitting devices: faster host aggregation by Exciton-polaron interactions [J]. Adv. Funct. Mater., 2016, 26(47): 8662-8669. doi: 10.1002/adfm.201603542http://dx.doi.org/10.1002/adfm.201603542
WANG Q, AZIZ H. Exciton-polaron-induced aggregation of organic electroluminescent materials: a major degradation mechanism in wide-bandgap phosphorescent and fluorescent organic light-emitting devices [J]. Adv. Opt. Mater., 2015, 3(7): 967-975. doi: 10.1002/adom.201400640http://dx.doi.org/10.1002/adom.201400640
NIU Q, BLOM P W M, MAY F, et al. Transient electroluminescence on pristine and degraded phosphorescent blue OLEDs [J]. J. Appl. Phys., 2017, 122(18): 185502-1-7. doi: 10.1063/1.5006587http://dx.doi.org/10.1063/1.5006587
WANG Q, AZIZ H. Degradation of organic/organic interfaces in organic light-emitting devices due to polaron‐exciton interactions [J]. ACS Appl. Mater. Interfaces, 2013, 5(17): 8733-8739. doi: 10.1021/am402537jhttp://dx.doi.org/10.1021/am402537j
PATIL V V, LEE K H, LEE J Y. Donor and acceptor fused 16,16-dimethyl-11,16-dihydrodibenzo[2,3:5,6]pyrrolizino[1,7-ab]acridine as a blue-emitting chromophore for high external quantum efficiency and long lifetime [J]. Adv. Opt. Mater., 2020, 8(17): 2000480-1-8. doi: 10.1002/adom.202000480http://dx.doi.org/10.1002/adom.202000480
GUO X, TANG Z Y, YU W J, et al. A high thermal stability terpyridine derivative as the electron transporter for long-lived green phosphorescent OLED [J]. Org. Electron., 2021, 89: 106048-1-7. doi: 10.1016/j.orgel.2020.106048http://dx.doi.org/10.1016/j.orgel.2020.106048
JUNG H, KANG S, LEE H, et al. High efficiency and long lifetime of a fluorescent blue-light emitter made of a pyrene core and optimized side groups [J]. ACS Appl. Mater. Interfaces, 2018, 10(36): 30022-30028. doi: 10.1021/acsami.8b09013http://dx.doi.org/10.1021/acsami.8b09013
SHIN S K, BYEON S Y, HAN S H, et al. Novel host materials based on dibenzothiophene and carbazolylcarbazole for extended lifetime in blue phosphorescent organic light-emitting diodes [J]. Adv. Opt. Mater., 2018, 6(3): 1701007-1-7. doi: 10.1002/adom.201701007http://dx.doi.org/10.1002/adom.201701007
CHO H, LEE J, LEE J I, et al. Phenylimidazole-based homoleptic iridium(Ⅲ) compounds for blue phosphorescent organic light-emitting diodes with high efficiency and long lifetime [J]. Org. Electron., 2016, 34: 91-96. doi: 10.1016/j.orgel.2016.04.026http://dx.doi.org/10.1016/j.orgel.2016.04.026
LEE J, JEONG C, BATAGODA T, et al. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes [J]. Nat. Commun., 2017, 8: 15566-1-9. doi: 10.1038/ncomms15566http://dx.doi.org/10.1038/ncomms15566
NGUYEN T B, NAKANOTANI H, HATAKEYAMA T, et al. The role of reverse intersystem crossing using a TADF-type acceptor molecule on the device stability of exciplex-based organic light-emitting diodes [J]. Adv. Mater., 2020, 32(9): 1906614-1-7. doi: 10.1002/adma.201906614http://dx.doi.org/10.1002/adma.201906614
NODA H, NAKANOTANI H, ADACHI C. Excited state engineering for efficient reverse intersystem crossing [J]. Sci. Adv., 2018, 4(6): eaao6910-1-7. doi: 10.1126/sciadv.aao6910http://dx.doi.org/10.1126/sciadv.aao6910
HEIMEL P, MONDAL A, MAY F, et al. Unicolored phosphor-sensitized fluorescence for efficient and stable blue OLEDs [J]. Nat. Commun., 2018, 9(1): 4990-1-8. doi: 10.1038/s41467-018-07432-2http://dx.doi.org/10.1038/s41467-018-07432-2
CUI L S, RUAN S B, BENCHEIKH F, et al. Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts [J]. Nat. Commun., 2017, 8(1): 2250-1-8. doi: 10.1038/s41467-017-02419-xhttp://dx.doi.org/10.1038/s41467-017-02419-x
KIM J M, LEE C H, KIM J J. Mobility balance in the light-emitting layer governs the polaron accumulation and operational stability of organic light-emitting diodes [J]. Appl. Phys. Lett., 2017, 111(20): 203301-1-5. doi: 10.1063/1.5004623http://dx.doi.org/10.1063/1.5004623
BANGSUND J S, HERSHEY K W, HOLMES R J. Isolating degradation mechanisms in mixed emissive layer organic light-emitting devices [J]. ACS Appl. Mater. Interfaces, 2018, 10(6): 5693-5699. doi: 10.1021/acsami.7b16643http://dx.doi.org/10.1021/acsami.7b16643
ZHANG Y F, LEE J, FORREST S R. Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes [J]. Nat. Commun., 2014, 5: 5008-1-7. doi: 10.1038/ncomms6008http://dx.doi.org/10.1038/ncomms6008
SUN J, AHN H, KANG S, et al. Exceptionally stable blue phosphorescent organic light-emitting diodes [J]. Nat. Photonics, 2022, 16(3): 212-218. doi: 10.1038/s41566-022-00958-4http://dx.doi.org/10.1038/s41566-022-00958-4
ZHANG Z T, WANG W C, JIANG Y W, et al. High-brightness all-polymer stretchable LED with charge-trapping dilution [J]. Nature, 2022, 603(7902): 624-630. doi: 10.1038/s41586-022-04400-1http://dx.doi.org/10.1038/s41586-022-04400-1
YAN M, ROTHBERG L J, PAPADIMITRAKOPOULOS F, et al. Defect quenching of conjugated polymer luminescence [J]. Phys. Rev. Lett., 1994, 73(5): 744-747. doi: 10.1103/physrevlett.73.744http://dx.doi.org/10.1103/physrevlett.73.744
GASSMANN A, YAMPOLSKII S V, KLEIN A, et al. Study of electrical fatigue by defect engineering in organic light-emitting diodes [J]. Mater. Sci. Eng. B, 2015, 192: 26-51. doi: 10.1016/j.mseb.2014.10.014http://dx.doi.org/10.1016/j.mseb.2014.10.014
NICOLAI H T, KUIK M, WETZELAER G A H, et al. Unification of trap-limited electron transport in semiconducting polymers [J]. Nat. Mater., 2012, 11(10): 882-887. doi: 10.1038/nmat3384http://dx.doi.org/10.1038/nmat3384
PARKER I D, CAO Y, YANG C Y. Lifetime and degradation effects in polymer light-emitting diodes [J]. J. Appl. Phys., 1999, 85(4): 2441-2447. doi: 10.1063/1.369564http://dx.doi.org/10.1063/1.369564
SILVESTRE G C M, JOHNSON M T, GIRALDO A, et al. Light degradation and voltage drift in polymer light-emitting diodes [J]. Appl. Phys. Lett., 2001, 78(11): 1619-1621. doi: 10.1063/1.1355013http://dx.doi.org/10.1063/1.1355013
KIM J S, HO P K H, MURPHY C E, et al. Electrical degradation of triarylamine-based light-emitting polymer diodes monitored by micro-Raman spectroscopy [J]. Chem. Phys. Lett., 2004, 386(1-3): 2-7. doi: 10.1016/j.cplett.2003.12.124http://dx.doi.org/10.1016/j.cplett.2003.12.124
STEGMAIER K, FLEISSNER A, JANNING H, et al. Influence of electrical fatigue on hole transport in poly(p-phenylenevinylene)-based organic light-emitting diodes [J]. J. Appl. Phys., 2011, 110(3): 034507-1-9. doi: 10.1063/1.3610381http://dx.doi.org/10.1063/1.3610381
KUIK M, WETZELAER G J A H, NICOLAI H T, et al. 25th anniversary article: charge transport and recombination in polymer light-emitting diodes [J]. Adv. Mater., 2014, 26(4): 512-531. doi: 10.1002/adma.201303393http://dx.doi.org/10.1002/adma.201303393
NIU Q, ROHLOFF R, WETZELAER G J A H, et al. Hole trap formation in polymer light-emitting diodes under current stress [J]. Nat. Mater., 2018, 17(6): 557-562. doi: 10.1038/s41563-018-0057-xhttp://dx.doi.org/10.1038/s41563-018-0057-x
NIU Q, CRĂCIUN N I, WETZELAER G J A H, et al. Origin of negative capacitance in bipolar organic diodes [J]. Phys. Rev. Lett., 2018, 120(11): 116602-1-5. doi: 10.1103/physrevlett.120.116602http://dx.doi.org/10.1103/physrevlett.120.116602
RÖRICH I, NIU Q, der ZEE B, et al. Exciton quenching due to hole trap formation in aged polymer light-emitting diodes [J]. Adv. Electron. Mater., 2020, 6(7): 1700643-1-6. doi: 10.1002/aelm.201700643http://dx.doi.org/10.1002/aelm.201700643
NIU Q, WETZELAER G J A H, BLOM P W M, et al. Modeling of electrical characteristics of degraded polymer light-emitting diodes [J]. Adv. Electron. Mater., 2016, 2(8): 1600103-1-10. doi: 10.1002/aelm.201600103http://dx.doi.org/10.1002/aelm.201600103
NIU Q, WETZELAER G J A H, BLOM P W M, et al. Quantification of hole-trap concentration in degraded polymer light-emitting diodes using impedance spectroscopy [J]. Appl. Phys. Lett., 2019, 114(16): 163301-1-4. doi: 10.1063/1.5083036http://dx.doi.org/10.1063/1.5083036
KOSTER L J A, SMITS E C P, MIHAILETCHI V D, et al. Device model for the operation of polymer/fullerene bulk heterojunction solar cells [J]. Phys. Rev. B, 2005, 72(8): 085205-1-9. doi: 10.1103/physrevb.72.085205http://dx.doi.org/10.1103/physrevb.72.085205
ZEE B, PAULUS S, PNG R Q, et al. Role of singlet and triplet excitons on the electrical stability of polymer light-emitting diodes [J]. Adv. Electron. Mater., 2020, 6(8): 2000367-1-9. doi: 10.1002/aelm.202000367http://dx.doi.org/10.1002/aelm.202000367
ABBASZADEH D, KUNZ A, WETZELAER G A H, et al. Elimination of charge carrier trapping in diluted semiconductors [J]. Nat. Mater., 2016, 15(6): 628-633. doi: 10.1038/nmat4626http://dx.doi.org/10.1038/nmat4626
0
浏览量
831
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构