浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室, 吉林 长春 130022
2.中国科学技术大学 应用化学与工程学院, 安徽 合肥 230026
[ "刘奕君(1996-),女,江西南昌人,博士研究生,2018年于浙江大学获得学士学位,主要从事晶态有机电致发光器件的研究。 E-mail: osc6@ciac.ac.cn" ]
[ "朱峰(1982-),男,山东淄博人,博士,研究员,博士生导师,2009年于中国科学院长春应用化学研究所获得博士学位,主要从事有机固体薄膜电子学、晶态有机电致发光器件、软物质微纳器件与集成加工技术的研究。 E-mail: zhufeng@ciac.ac.cn" ]
纸质出版日期:2023-01-05,
收稿日期:2022-08-30,
修回日期:2022-09-13,
移动端阅览
刘奕君,朱峰,闫东航.基于弱取向外延生长多晶薄膜的OLED研究进展[J].发光学报,2023,44(01):129-139.
LIU Yijun,ZHU Feng,YAN Donghang.Research Progresses on Polycrystalline Thin-film Organic Light-emitting Diodes Based on Weak-epitaxy-growth Technique[J].Chinese Journal of Luminescence,2023,44(01):129-139.
刘奕君,朱峰,闫东航.基于弱取向外延生长多晶薄膜的OLED研究进展[J].发光学报,2023,44(01):129-139. DOI: 10.37188/CJL.20220315.
LIU Yijun,ZHU Feng,YAN Donghang.Research Progresses on Polycrystalline Thin-film Organic Light-emitting Diodes Based on Weak-epitaxy-growth Technique[J].Chinese Journal of Luminescence,2023,44(01):129-139. DOI: 10.37188/CJL.20220315.
有机晶体材料中分子排列规则,形成长程有序、缺陷态密度低的结构,相对于非晶态材料具有很好的热稳定性、化学稳定性以及高的载流子迁移率,使得有机晶体材料在发展高性能OLED方面具有巨大的潜力。本文总结了近期利用弱取向外延生长技术发展的多晶薄膜OLED(C‐OLED)系列工作。从最初的单结晶层绿光器件发展到多层掺杂深蓝光器件,C‐OLED证实晶态有机半导体路线可以实现有效发光,器件表现出低启亮电压、低工作电压、高光输出、高功率效率和低焦耳热损耗等优越特性。
Organic crystalline materials possess ordered molecular arrangement, forming structures with long-range order and low density of defect states. These properties result in good thermal stability, chemical stability and high carrier mobility compared to organic amorphous materials, making organic crystalline materials have great potential in developing high-performance OLEDs. This paper reviews the recent progress on crystalline thin-film OLEDs (C-OLEDs) based on weak-epitaxy-growth(WEG) technique. From the initial single crystalline layer green-emission device to multi-layer doped deep-blue-emission device, C-OLEDs have proved the crystalline organic semiconductor route is capable of realizing efficient light emitting, and the devices have achieved superior characteristics of low turn-on voltage, low operating voltage, high photon output, high power efficiency and low Joule heat loss.
有机发光二极管多晶薄膜弱取向外延生长
organic light-emitting diodescrystalline thin-filmsweak-epitaxy-growth
POPE M, KALLMANN H P, MAGNANTE P. Electroluminescence in organic crystals [J]. J. Chem. Phys., 1963, 38(8): 2042-2043. doi: 10.1063/1.1733929http://dx.doi.org/10.1063/1.1733929
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
GU J, KAWABE M, MASUDA K, et al. Electroluminescence of anthracene with powdered graphite electrodes and ambient gas effects on the electrodes [J]. J. Appl. Phys., 1977, 48(6): 2493-2494. doi: 10.1063/1.324014http://dx.doi.org/10.1063/1.324014
YANAGI H, MORIKAWA T, HOTTA S, et al. Electroluminescence from low-dimensionally confined crystals of thiophene/p-phenylene co-oligomers [J]. Appl. Phys. Lett., 2002, 81(8): 1512-1514. doi: 10.1063/1.1502023http://dx.doi.org/10.1063/1.1502023
YEE K W, YOKOYAMA M, HIRAMOTO M. Very-thin-perylene-crystal-based electroluminescent devices [J]. Appl. Phys. Lett., 2006, 88(8): 083511-1-3. doi: 10.1063/1.2179619http://dx.doi.org/10.1063/1.2179619
NAKANOTANI H, ADACHI C. Organic light-emitting diodes containing multilayers of organic single crystals [J]. Appl. Phys. Lett., 2010, 96(5): 053301-1-3. doi: 10.1063/1.3298558http://dx.doi.org/10.1063/1.3298558
LI X J, XU Y X, LI F, et al. Organic light-emitting diodes based on an ambipolar single crystal [J]. Org. Electron., 2012, 13(5): 762-766. doi: 10.1016/j.orgel.2012.01.028http://dx.doi.org/10.1016/j.orgel.2012.01.028
DING R, FENG J, ZHANG X L, et al. Fabrication and characterization of organic single crystal-based light-emitting devices with improved contact between the metallic electrodes and crystal [J]. Adv. Funct. Mater., 2014, 24(45): 7085-7092. doi: 10.1002/adfm.201470292http://dx.doi.org/10.1002/adfm.201470292
DING R, DONG F X, AN M H, et al. High-color-rendering and high-efficiency white organic light-emitting devices based on double-doped organic single crystals [J]. Adv. Funct. Mater., 2019, 29(12): 1807606-1-8. doi: 10.1002/adfm.201807606http://dx.doi.org/10.1002/adfm.201807606
ZHU Q C, LIU Y, AN M H, et al. Enhanced performance of white organic light-emitting devices based on ambipolar white organic single crystals [J]. Appl. Phys. Lett., 2021, 118(16): 163301-1-5. doi: 10.1063/5.0045036http://dx.doi.org/10.1063/5.0045036
LIU J, ZHANG H T, DONG H L, et al. High mobility emissive organic semiconductor [J]. Nat. Commun., 2015, 6: 10032-1-8. doi: 10.1038/ncomms10032http://dx.doi.org/10.1038/ncomms10032
KIM K H, LIAO J L, LEE S W, et al. Crystal organic light-emitting diodes with perfectly oriented non-doped Pt-based emitting Layer [J]. Adv. Mater., 2016, 28(13): 2526-2532. doi: 10.1002/adma.201504451http://dx.doi.org/10.1002/adma.201504451
YANG X X, FENG X, XIN J H, et al. Highly efficient crystalline organic light-emitting diodes [J]. J. Mater. Chem. C, 2018, 6(33): 8879-8884. doi: 10.1039/c8tc03069chttp://dx.doi.org/10.1039/c8tc03069c
YANG X X, FENG X, XIN J H, et al. High-performance crystalline organic light-emitting diodes based on multi-layer high-quality crystals [J]. Org. Electron., 2019, 64: 236-240. doi: 10.1016/j.orgel.2018.10.023http://dx.doi.org/10.1016/j.orgel.2018.10.023
LIU L, LI C L, LI Z Q, et al. Highly oriented crystalline thin film with high electroluminescence performance fabricated by weak epitaxy growth [J]. Org. Electron., 2020, 84: 105806-1-7. doi: 10.1016/j.orgel.2020.105806http://dx.doi.org/10.1016/j.orgel.2020.105806
XIN J H, SUN P F, ZHU F, et al. Doped crystalline thin-film deep-blue organic light-emitting diodes [J]. J. Mater. Chem. C, 2021, 9(7): 2236-2242. doi: 10.1039/d0tc05934jhttp://dx.doi.org/10.1039/d0tc05934j
TAKAHASHI T, TAKENOBU T, TAKEYA J, et al. Ambipolar light-emitting transistors of a tetracene single crystal [J]. Adv. Funct. Mater., 2007, 17(10): 1623-1628. doi: 10.1002/adfm.200700046http://dx.doi.org/10.1002/adfm.200700046
QIN Z S, GAO H K, LIU J Y, et al. High-efficiency single-component organic light-emitting transistors [J]. Adv. Mater., 2019, 31(37): 1903175-1-8. doi: 10.1002/adma.201903175http://dx.doi.org/10.1002/adma.201903175
WAN Y J, DENG J, WU W L, et al. Efficient organic light-emitting transistors based on high-quality ambipolar single crystals [J]. ACS Appl. Mater. Interfaces, 2020, 12(39): 43976-43983. doi: 10.1021/acsami.0c12842http://dx.doi.org/10.1021/acsami.0c12842
QIN Z S, GAO H K, DONG H L, et al. Organic light-emitting transistors entering a new development stage [J]. Adv. Mater., 2021, 33(31): 2007149-1-17. doi: 10.1002/adma.202007149http://dx.doi.org/10.1002/adma.202007149
LIU L Q, CAI C, ZHANG Z J, et al. Lamellar organic light-emitting crystals exhibiting spectral gain and 3.6% external quantum efficiency in transistors [J]. ACS Mater. Lett., 2021, 3(4): 428-432. doi: 10.1021/acsmaterialslett.1c00056http://dx.doi.org/10.1021/acsmaterialslett.1c00056
ICHIKAWA M, HIBINO R, INOUE M, et al. Improved crystal-growth and emission gain-narrowing of thiophene/phenylene co-oligomers [J]. Adv. Mater., 2003, 15(3): 213-217. doi: 10.1002/adma.200390048http://dx.doi.org/10.1002/adma.200390048
ZHANG T J, ZHOU Z H, LIU X L, et al. Thermally activated lasing in organic microcrystals toward laser displays [J]. J. Am. Chem. Soc., 2021, 143(48): 20249-20255. doi: 10.1021/jacs.1c08824http://dx.doi.org/10.1021/jacs.1c08824
WANG K, ZHAO Y S. Pursuing electrically pumped lasing with organic semiconductors [J]. Chem, 2021, 7(12): 3221-3231. doi: 10.1016/j.chempr.2021.10.014http://dx.doi.org/10.1016/j.chempr.2021.10.014
ICHIKAWA M, NAKAMURA K, INOUE M, et al. Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer [J]. Appl. Phys. Lett., 2005, 87(22): 221113-1-3. doi: 10.1063/1.2138361http://dx.doi.org/10.1063/1.2138361
WARTA W, KARL N. Hot holes in naphthalene: high, electric-field-dependent mobilities [J]. Phys. Rev. B, 1985, 32(2): 1172-1182. doi: 10.1103/physrevb.32.1172http://dx.doi.org/10.1103/physrevb.32.1172
FICHOU D, BACHET B, DEMANZE F, et al. Growth and structural characterization of the quasi-2D single crystal of α-octithiophene [J]. Adv. Mater., 1996, 8(6): 500-504. doi: 10.1002/adma.19960080610http://dx.doi.org/10.1002/adma.19960080610
FICHOU D, DELYSSE S, NUNZI J M. First evidence of stimulated emission from a monolithic organic single crystal: α-octithiophene [J]. Adv. Mater., 1997, 9(15): 1178-1181. doi: 10.1002/adma.19970091512http://dx.doi.org/10.1002/adma.19970091512
LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole [J]. Chem. Commun., 2001, (18): 1740-1741. doi: 10.1039/b105159hhttp://dx.doi.org/10.1039/b105159h
YAMAGISHI M, TAKEYA J, TOMINARI Y, et al. High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators [J]. Appl. Phys. Lett., 2007, 90(18): 182117-1-3. doi: 10.1063/1.2736208http://dx.doi.org/10.1063/1.2736208
YUAN W Z, SHEN X Y, ZHAO H, et al. Crystallization-induced phosphorescence of pure organic luminogens at room temperature [J]. J. Phys. Chem. C, 2010, 114(13): 6090-6099. doi: 10.1021/jp909388yhttp://dx.doi.org/10.1021/jp909388y
SCHMIDT T D, LAMPE T, SYLVINSON M R D, et al. Emitter orientation as a key parameter in organic light-emitting diodes [J]. Phys. Rev. Appl., 2017, 8(3): 037001-1-28. doi: 10.1103/physrevapplied.8.037001http://dx.doi.org/10.1103/physrevapplied.8.037001
DING R, WANG X P, FENG J, et al. Clarification of the molecular doping mechanism in organic single-crystalline semiconductors and their application in color-tunable light-emitting devices [J]. Adv. Mater., 2018, 30(43): 1801078-1-11. doi: 10.1002/adma.201801078http://dx.doi.org/10.1002/adma.201801078
WANG H B, ZHU F, YANG J L, et al. Weak epitaxy growth affording high-mobility thin films of disk-like organic semiconductors [J]. Adv. Mater., 2007, 19(16): 2168-2171. doi: 10.1002/adma.200602566http://dx.doi.org/10.1002/adma.200602566
闫东航, 王海波, 杜宝勋. 有机半导体异质结导论 [M]. 北京: 科学出版社, 2008.
YAN D H, WANG H B, DU B X. Introduction to Organic Seiconductor Heterojunctions [M]. Beijing: Science Press, 2008. (in Chinese)
YANG J L, YAN D H. Weak epitaxy growth of organic semiconductor thin films [J]. Chem. Soc. Rev., 2009, 38(9): 2634-2645. doi: 10.1039/b815723phttp://dx.doi.org/10.1039/b815723p
HASHIMOTO K, SASAKI F, HOTTA S, et al. Amplified emission and field-effect transistor characteristics of one-dimensionally structured 2, 5-bis(4-biphenylyl)thiophene crystals [J]. J. Nanosci. Nanotechnol., 2016, 16(4): 3200-3205. doi: 10.1166/jnn.2016.12285http://dx.doi.org/10.1166/jnn.2016.12285
TANG C W, VANSLYKE S A, CHEN C H. Electroluminescence of doped organic thin films [J]. J. Appl. Phys., 1989, 65(9): 3610-3616. doi: 10.1063/1.343409http://dx.doi.org/10.1063/1.343409
KIDO J, KIMURA M, NAGAI K. Multilayer white light-emitting organic electroluminescent device [J]. Science, 1995, 267(5202): 1332-1334. doi: 10.1126/science.267.5202.1332http://dx.doi.org/10.1126/science.267.5202.1332
AN M H, DING R, ZHU Q C, et al. Well-balanced ambipolar organic single crystals toward highly efficient light-emitting devices [J]. Adv. Funct. Mater., 2020, 30(49): 2002422-1-8. doi: 10.1002/adfm.202002422http://dx.doi.org/10.1002/adfm.202002422
XIN J H, LI Z Q, LIU Y J, et al. High-efficiency non-doped deep-blue fluorescent organic light-emitting diodes based on carbazole/phenanthroimidazole derivatives [J]. J. Mater. Chem. C, 2020, 8(30): 10185-10190. doi: 10.1039/d0tc02594ahttp://dx.doi.org/10.1039/d0tc02594a
0
浏览量
487
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构