浏览全部资源
扫码关注微信
苏州大学 功能纳米与软物质研究院, 江苏 苏州 215123
[ "曲志浩(1997-),男,山东滨州人,硕士研究生,2021年于青岛大学获得学士学位,主要从事有机发光器件的研究。 E-mail: 20214214008@stu.suda.edu.cn" ]
[ "廖良生(1956-),男,江西遂川人,博士,教授,1996年于南京大学获得博士学位,主要从事有机发光材料与器件、有机晶体等方向的研究。 E-mail: lsliao@suda.edu.cn" ]
纸质出版日期:2023-01-05,
收稿日期:2022-08-30,
修回日期:2022-09-12,
移动端阅览
曲志浩,蔡嘉恒,周东营等.高效有机发光二极管的光提取技术及其研究进展[J].发光学报,2023,44(01):163-173.
QU Zhihao,CAI Jiaheng,ZHOU Dongying,et al.Advances in Highly Effective Light Extraction Schemes for Organic Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(01):163-173.
曲志浩,蔡嘉恒,周东营等.高效有机发光二极管的光提取技术及其研究进展[J].发光学报,2023,44(01):163-173. DOI: 10.37188/CJL.20220314.
QU Zhihao,CAI Jiaheng,ZHOU Dongying,et al.Advances in Highly Effective Light Extraction Schemes for Organic Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(01):163-173. DOI: 10.37188/CJL.20220314.
高性能材料研究使有机发光二极管(Organic light⁃emitting diode,OLED)取得了突飞猛进的发展,但是器件内部生成的光子由于光学损耗无法全部发射到外部空间,从而极大地降低了OLED效率,并阻碍了其在节能照明市场的应用。通过调控光损失区域的波传导,光提取技术能够有效抑制衬底、波导、表面等离子激元等损耗模式,理论上可使效率扩大4倍。具有1.05~2倍扩大效果的光提取技术已被大量报道,但与理论极限仍存在很大差距。为此,本文简要分析了OLED光学损耗模式,综述了近年来高效的、特别是能实现2倍以上扩大效果的光提取技术。
Researches in advanced and efficient materials have greatly promoted the fast development of organic light-emitting diodes (OLEDs). However, the generated photons inside the device can not completely escape into the external field due to the inherent optical losses, which greatly reduces the electroluminescence efficiency of OLEDs and hinders the commercialization progress of OLEDs for lighting applications. By manipulating the light propagation in the vicinity of optical losses, light extraction schemes could efficiently suppress the substrate mode, the waveguide mode, and the surface plasmon polariton mode, leading to a maximum enhancement factor of 4 in theory. A large number of reported light extraction strategies could improve the OLED efficiency by 1.05-2 times, but still lag behind the theorical limit. With this regard, we briefly introduce the optical loss mechanism in OLEDs and summarize the recent progresses of highly effective light extraction technologies particularly with the promising enhancement factor of above 2.
有机发光二极管光提取波导模式微纳结构
organic light-emitting diodeslight extractionwaveguide modemicro-nano structure
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
D’ANDRADE B W, FORREST S R. White organic light-emitting devices for solid-state lighting [J]. Adv. Mater., 2004, 16(18): 1585-1595. doi: 10.1002/adma.200400684http://dx.doi.org/10.1002/adma.200400684
REINEKE S, LINDNER F, SCHWARTZ G, et al. White organic light-emitting diodes with fluorescent tube efficiency [J]. Nature, 2009, 459(7244): 234-238. doi: 10.1038/nature08003http://dx.doi.org/10.1038/nature08003
季渊, 王成其, 陈文栋, 等. OLED微显示器的原子扫描策略 [J]. 光学 精密工程, 2018, 26(4): 998-1005. doi: 10.3788/ope.20182604.0998http://dx.doi.org/10.3788/ope.20182604.0998
JI Y, WANG C Q, CHEN W D, et al. An atom scan strategy for OLED micro display [J]. Opt. Precision Eng., 2018, 26(4): 998-1005. (in Chinese). doi: 10.3788/ope.20182604.0998http://dx.doi.org/10.3788/ope.20182604.0998
马东阁. OLED显示与照明——从基础研究到未来的应用 [J]. 液晶与显示, 2016, 31(3): 229-241. doi: 10.3788/yjyxs20163103.0229http://dx.doi.org/10.3788/yjyxs20163103.0229
MA D G. OLED display and lighting—from basic research to future applications [J]. Chin. J. Liq. Cryst. Disp., 2016, 31(3): 229-241. (in Chinese). doi: 10.3788/yjyxs20163103.0229http://dx.doi.org/10.3788/yjyxs20163103.0229
BALDO M A, O’BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698): 151-154. doi: 10.1038/25954http://dx.doi.org/10.1038/25954
UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-238. doi: 10.1038/nature11687http://dx.doi.org/10.1038/nature11687
WANG Q, ZHANG Y X, YUAN Y, et al. Alleviating efficiency roll-off of hybrid single-emitting layer WOLED utilizing bipolar TADF material as host and emitter [J]. ACS Appl. Mater. Interfaces, 2019, 11(2): 2197-2204. doi: 10.1021/acsami.8b18665http://dx.doi.org/10.1021/acsami.8b18665
WANG Y K, HUANG C C, YE H, et al. Through space charge transfer for efficient sky-blue thermally activated delayed fluorescence (TADF) emitter with unconjugated connection [J]. Adv. Opt. Mater., 2020, 8(2): 1901150-1-7. doi: 10.1002/adom.201901150http://dx.doi.org/10.1002/adom.201901150
MENG X Y, FENG Z Q, YU Y J, et al. Highly efficient blue thermally activated delayed fluorescence emitters based on multi-donor modified oxygen-bridged boron acceptor [J]. Molecules, 2022, 27(13): 4048-1-9. doi: 10.3390/molecules27134048http://dx.doi.org/10.3390/molecules27134048
唐歌, 刘士浩, 张乐天, 等. 单层热激活延迟荧光有机发光器件及其激子分布特性 [J]. 发光学报, 2022, 43(4): 576-582. doi: 10.37188/CJL.20220014http://dx.doi.org/10.37188/CJL.20220014
TANG G, LIU S H, ZHANG L T, et al. Single-layer thermally activated delayed fluorescent organic light-emitting devices and exciton distribution profiles [J]. Chin. J. Lumin., 2022, 43(4): 576-582. (in Chinese). doi: 10.37188/CJL.20220014http://dx.doi.org/10.37188/CJL.20220014
常鹏, 韩春苗, 许辉. 近红外有机小分子电致发光材料研究进展 [J]. 液晶与显示, 2021, 36(1): 62-77. doi: 10.37188/CJLCD.2020-0207http://dx.doi.org/10.37188/CJLCD.2020-0207
CHANG P, HAN C M, XU H. Research progress of near infrared organic small-molecule electroluminescent materials [J]. Chin. J. Liq. Cryst. Disp., 2021, 36(1): 62-77. (in Chinese). doi: 10.37188/CJLCD.2020-0207http://dx.doi.org/10.37188/CJLCD.2020-0207
王家兴, 姚登莉, 蔡平, 等. WCl6掺杂PEDOT∶PSS作为空穴注入层的高效率近紫外有机发光器件 [J]. 发光学报, 2021, 42(12): 1906-1913.
WANG J X, YAO D L, CAI P, et al. Highly efficient near ultraviolet organic light-emitting device based on WCl6 doped PEDOT∶PSS as hole injection layer [J]. Chin. J. Lumin., 2021, 42(12): 1906-1913. (in Chinese)
由雪萌, 张新稳, 陈月花, 等. 非掺杂型高效绿色磷光有机电致发光器件 [J]. 发光学报, 2016, 37(8): 961-966. doi: 10.3788/fgxb20163708.0961http://dx.doi.org/10.3788/fgxb20163708.0961
YOU X M, ZHANG X W, CHEN Y H, et al. High efficiency green phosphorescent organic light emitting diodes using an ultrathin nondoped emitting layer [J]. Chin. J. Lumin., 2016, 37(8): 961-966. (in Chinese). doi: 10.3788/fgxb20163708.0961http://dx.doi.org/10.3788/fgxb20163708.0961
王梦竹, 邓勇靖, 赵淑娟, 等. 有机自组装低维圆偏振发光材料的研究进展 [J]. 中国光学, 2021, 14(1): 66-76. doi: 10.37188/co.2020-0192http://dx.doi.org/10.37188/co.2020-0192
WANG M Z, DENG Y J, ZHAO S J, et al. Research progress on organic self-assembling low-dimensional circularly polarized luminescent materials [J]. Chin. Opt., 2021, 14(1): 66-76. (in Chinese). doi: 10.37188/co.2020-0192http://dx.doi.org/10.37188/co.2020-0192
蓝露华, 陶洪, 李美灵, 等. 有机发光二极管光取出技术进展 [J]. 物理化学学报, 2017, 33(8): 1548-1572. doi: 10.3866/PKU.WHXB201704283http://dx.doi.org/10.3866/PKU.WHXB201704283
LAN L H, TAO H, LI M L, et al. Progress of light extraction technology for organic light-emitting diodes [J]. Acta. Phys. Chim. Sinica, 2017, 33(8): 1548-1572. (in Chinese). doi: 10.3866/PKU.WHXB201704283http://dx.doi.org/10.3866/PKU.WHXB201704283
钟可君, 伏燕军, 江光裕. 一种提高OLED基底出光效率的亚波长光栅设计 [J]. 应用光学, 2018, 39(5): 701-706. doi: 10.5768/jao201839.0505001http://dx.doi.org/10.5768/jao201839.0505001
ZHONG K J, FU Y J, JIANG G Y. Design of sub-wavelength grating for improving efficiency of OLED substrate [J]. J. Appl. Opt., 2018, 9(5): 701-706. (in Chinese). doi: 10.5768/jao201839.0505001http://dx.doi.org/10.5768/jao201839.0505001
潘赛虎, 于航, 赵云平, 等. 金属纳米颗粒的导入对顶发射OLED光取出影响的FDTD模拟与研究 [J]. 光学学报, 2022, 42(9): 0916001-1-7.
PAN S H, YU H, ZHAO Y P, et al. FDTD simulation and study on effect of metal nanoparticle introduction on light extraction of top-emitting OLED [J]. Acta Opt. Sinica, 2022, 42(9): 0916001-1-7. (in Chinese)
崔东岳, 王帅, 李淑红, 等. 调控空穴传输层的分子取向提高有机发光二极管性能 [J]. 发光学报, 2021, 42(5): 691-699. doi: 10.37188/CJL.20210046http://dx.doi.org/10.37188/CJL.20210046
CUI D Y, WANG S, LI S H, et al. Improving performance of organic light-emitting diodes by tuning molecular orientation in hole transport layer [J]. Chin. J. Lumin., 2021, 42(5): 691-699. (in Chinese). doi: 10.37188/CJL.20210046http://dx.doi.org/10.37188/CJL.20210046
欧清东, 唐建新. 有机发光器件的光学调控研究进展 [J]. 中国材料进展, 2016, 35(8): 606-612.
OU Q D, TANG J X. Recent advances in light manipulation for organic light-emitting diodes [J]. Mater. China, 2016, 35(8): 606-612. (in Chinese)
KIM J S, HO P K H, GREENHAM N C, et al. Electroluminescence emission pattern of organic light-emitting diodes: implications for device efficiency calculations [J]. J. Appl. Phys., 2000, 88(2): 1073-1081. doi: 10.1063/1.373779http://dx.doi.org/10.1063/1.373779
SALEHI A, FU X Y, SHIN D H, et al. Recent advances in OLED optical design [J]. Adv. Funct. Mater., 2019, 29(15): 1808803-1-21. doi: 10.1002/adfm.201808803http://dx.doi.org/10.1002/adfm.201808803
MURAWSKI C, GRAF A, LIEHM P, et al. 50-1: Invited paper: recent advances in measuring and understanding the influence of molecular alignment on the light extraction efficiency of OLEDs [J]. SID Symp. Dig. Techn. Pap., 2017, 48(1): 742-745. doi: 10.1002/sdtp.11727http://dx.doi.org/10.1002/sdtp.11727
周芳, 庄孝磊, 申溯, 等. 微透镜阵列薄膜定向增强OLED耦合效率的研究 [J]. 光电子·激光, 2010, 21(10): 1480-1483.
ZHOU F, ZHUANG X L, SHEN S, et al. Directional out-coupling efficiency enhancement of OLED with microlens array films [J]. J. Optoelectron.·Laser, 2010, 21(10): 1480-1483. (in Chinese)
MADIGAN C F, LU M H, STURM J C. Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification [J]. Appl. Phys. Lett., 2000, 76(13): 1650-1652. doi: 10.1063/1.126124http://dx.doi.org/10.1063/1.126124
WRZESNIEWSKI E, EOM S H, CAO W R, et al. Enhancing light extraction in top-emitting organic light-emitting devices using molded transparent polymer microlens arrays [J]. Small, 2012, 8(17): 2647-2651. doi: 10.1002/smll.201102662http://dx.doi.org/10.1002/smll.201102662
EOM S H, WRZESNIEWSKI E, XUE J G. Close-packed hemispherical microlens arrays for light extraction enhancement in organic light-emitting devices [J]. Org. Electron., 2011, 12(3): 472-476. doi: 10.1016/j.orgel.2010.12.021http://dx.doi.org/10.1016/j.orgel.2010.12.021
LEE K, SHIN J W, PARK J H, et al. A light scattering layer for internal light extraction of organic light-emitting diodes based on silver nanowires [J]. ACS Appl. Mater. Interfaces, 2016, 8(27): 17409-17415. doi: 10.1021/acsami.6b02924http://dx.doi.org/10.1021/acsami.6b02924
CHOI J, KIM S, PARK C H, et al. Light extraction enhancement in flexible organic light-emitting diodes by a light-scattering layer of dewetted Ag nanoparticles at low temperatures [J]. ACS Appl. Mater. Interfaces, 2018, 10(38): 32373-32379. doi: 10.1021/acsami.8b07026http://dx.doi.org/10.1021/acsami.8b07026
MIKAMI A. Optical design of 200-lm/W phosphorescent green light emitting devices based on the high refractive index substrate [J]. Phys. Status Solidi C, 2011, 8(9): 2899-2902. doi: 10.1002/pssc.201084041http://dx.doi.org/10.1002/pssc.201084041
JANG S, MOON J, CHO H, et al. Spontaneously formed organic wrinkle structure for top-emitting organic light emitting diodes [J]. J. Ind. Eng. Chem., 2019, 80: 490-496. doi: 10.1016/j.jiec.2019.08.033http://dx.doi.org/10.1016/j.jiec.2019.08.033
ZHANG S Y, TURNBULL G A, AMUEL D W. Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures [J]. Appl. Phys. Lett., 2013, 103(21): 213302-1-4. doi: 10.1063/1.4829759http://dx.doi.org/10.1063/1.4829759
CHANG H W, TIEN K C, HSU M H, et al. Organic light-emitting devices integrated with internal scattering layers for enhancing optical out-coupling [J]. J. SID, 2011, 19(2): 196-204. doi: 10.1889/jsid19.2.196http://dx.doi.org/10.1889/jsid19.2.196
CHANG C H, CHANG K Y, LO Y J, et al. Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer [J]. Org. Electron., 2012, 13(6): 1073-1080. doi: 10.1016/j.orgel.2012.02.017http://dx.doi.org/10.1016/j.orgel.2012.02.017
SAJEEV A K, AGARWAL N, SOMAN A, et al. Enhanced light extraction from organic light emitting diodes using a flexible polymer-nanoparticle scattering layer [J]. Org. Electron., 2022, 100: 106386-1-11. doi: 10.1016/j.orgel.2021.106386http://dx.doi.org/10.1016/j.orgel.2021.106386
LEE J, KWON Y Y, CHOI E H, et al. Enhancement of light-extraction efficiency of organic light-emitting diodes using silica nanoparticles embedded in TiO2 matrices [J]. Opt. Express, 2014, 22(S3): A705-A714. doi: 10.1364/oe.22.00a705http://dx.doi.org/10.1364/oe.22.00a705
OH M C, PARK J H, JEON H J, et al. Hollow-core polymeric nanoparticles for the enhancement of OLED outcoupling efficiency [J]. Displays, 2015, 37: 72-78. doi: 10.1016/j.displa.2014.11.004http://dx.doi.org/10.1016/j.displa.2014.11.004
KIM D H, LEE C M, ISLAM A, et al. Efficient photon extraction in top-emission organic light-emitting devices based on ampicillin microstructures [J]. Adv. Mater., 2022, 34(32): 2202866. doi: 10.1002/adma.202202866http://dx.doi.org/10.1002/adma.202202866
CHOI B H, LEE J H, LEE C H. Enhanced light extraction efficiency using self-textured aluminum-doped zinc oxide in organic light-emitting diodes [J]. Org. Electron., 2017, 51: 496-500. doi: 10.1016/j.orgel.2017.09.019http://dx.doi.org/10.1016/j.orgel.2017.09.019
SHI X B, QIAN M, ZHOU D Y, et al. Origin of light manipulation in nano-honeycomb structured organic light-emitting diodes [J]. J. Mater. Chem. C, 2015, 3(8): 1666-1671. doi: 10.1039/c4tc02596bhttp://dx.doi.org/10.1039/c4tc02596b
SHI X B, QIAN M, WANG Z K, et al. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes [J]. Appl. Phys. Lett., 2015, 106(22): 223301-1-4. doi: 10.1063/1.4922040http://dx.doi.org/10.1063/1.4922040
HE W, DONG X H, ZHOU J G, et al. Manipulation of the size of polystyrene spheres as the templates for internal light out-coupling structures of a white organic light-emitting diode [J]. J. Mater. Chem. C, 2021, 9(21): 6923-6929. doi: 10.1039/d1tc01137ehttp://dx.doi.org/10.1039/d1tc01137e
LEE C, KANG D J, KANG H, et al. Simultaneously enhancing light extraction and device stability of organic light-emitting diodes using a corrugated polymer nanosphere templated PEDOT∶PSS layer [J]. Adv. Energy Mater., 2014, 4(8): 1301345-1-6. doi: 10.1002/aenm.201301345http://dx.doi.org/10.1002/aenm.201301345
XU L H, OU Q D, LI Y Q, et al. Microcavity-free broadband light outcoupling enhancement in flexible organic light-emitting diodes with nanostructured transparent metal-dielectric composite electrodes [J]. ACS Nano, 2016, 10(1): 1625-1632. doi: 10.1021/acsnano.5b07302http://dx.doi.org/10.1021/acsnano.5b07302
REBOUD V, KHOKHAR A Z, SEPÚLVEDA B, et al. Enhanced light extraction in ITO-free OLEDs using double-sided printed electrodes [J]. Nanoscale, 2012, 4(11): 3495-3500. doi: 10.1039/c2nr12068bhttp://dx.doi.org/10.1039/c2nr12068b
JOHN S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett., 1987, 58(23): 2486-2489. doi: 10.1103/physrevlett.58.2486http://dx.doi.org/10.1103/physrevlett.58.2486
YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys. Rev. Lett., 1987, 58(20): 2059-2062. doi: 10.1103/physrevlett.58.2059http://dx.doi.org/10.1103/physrevlett.58.2059
张明, 郝立成, 冯晓东. 光子晶体结构增强有机发光二极管出光效率的理论计算 [J]. 南京工业大学学报(自然科学版), 2020, 42(1): 27-33.
ZHANG M, HAO L C, FENG X D. Theoretical calculation of enhancing the extraction efficiency of organic fight-emitting diodes by photonic crystals [J]. J. Nanjing Tech. Univ. (Nat. Sci. Ed.), 2020, 42(1): 27-33. (in Chinese)
DO Y R, KIM Y C, SONG Y W, et al. Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals [J]. Adv. Mater., 2003, 15(14): 1214-1218. doi: 10.1002/adma.200304857http://dx.doi.org/10.1002/adma.200304857
YUE Q Y, LI W, KONG F M, et al. Enhancing the out-coupling efficiency of organic light-emitting diodes using two-dimensional periodic nanostructures [J]. Adv. Mater. Sci. Eng., 2012, 2012: 985762-1-9. doi: 10.1155/2012/985762http://dx.doi.org/10.1155/2012/985762
KIM C S, KIM M, LARRABEE D C, et al. Enhanced performance of organic light-emitting diodes using two-dimensional zinc sulfide photonic crystals [J]. J. Appl. Phys., 2009, 106(11): 113105-1-4. doi: 10.1063/1.3264886http://dx.doi.org/10.1063/1.3264886
SHIM Y S, HWANG J H, PARK C H, et al. An extremely low-index photonic crystal layer for enhanced light extraction from organic light-emitting diodes [J]. Nanoscale, 2016, 8(7): 4113-4120. doi: 10.1039/c5nr07312jhttp://dx.doi.org/10.1039/c5nr07312j
KOO W H, JEONG S M, ARAOKA F, et al. Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles [J]. Nat. Photonics, 2010, 4(4): 222-226. doi: 10.1038/nphoton.2010.7http://dx.doi.org/10.1038/nphoton.2010.7
HUANG Y L, LIU Y Y, YOUSSEF K, et al. A solution processed flexible nanocomposite substrate with efficient light extraction via periodic wrinkles for white organic light-emitting diodes [J]. Adv. Opt. Mater., 2018, 6(23): 1801015-1-9. doi: 10.1002/adom.201801015http://dx.doi.org/10.1002/adom.201801015
TONG K, LIU X F, ZHAO F C, et al. Efficient light extraction of organic light-emitting diodes on a fully solution-processed flexible substrate [J]. Adv. Opt. Mater., 2017, 5(18): 1700307. doi: 10.1002/adom.201700307http://dx.doi.org/10.1002/adom.201700307
BAE B H, JUN S, KWON M S, et al. Highly efficient flexible OLEDs based on double-sided nano-dimpled substrate (PVB) with embedded AgNWs and TiO2 nanoparticle for internal and external light extraction [J]. Opt. Mater., 2019, 92: 87-94. doi: 10.1016/j.optmat.2019.04.007http://dx.doi.org/10.1016/j.optmat.2019.04.007
刘默, 李同, 王岩, 等. 有机电致发光器件光取出效率增强研究进展 [J]. 光谱学与光谱分析, 2011, 31(4): 871-876. doi: 10.3964/j.issn.1000-0593(2011)04-0871-06http://dx.doi.org/10.3964/j.issn.1000-0593(2011)04-0871-06
LIU M, LI T, WANG Y, et al. Progress of light extraction enhancement in organic light-emitting devices [J]. Spectrosc. Spectral Analy., 2011, 31(4): 871-876. (in Chinese). doi: 10.3964/j.issn.1000-0593(2011)04-0871-06http://dx.doi.org/10.3964/j.issn.1000-0593(2011)04-0871-06
CHANG H W, LEE J, HOFMANN S, et al. Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells [J]. J. Appl. Phys., 2013, 113(20): 204502-1-8. doi: 10.1063/1.4807000http://dx.doi.org/10.1063/1.4807000
SHIN J W, CHO D H, MOON J, et al. Random nano-structures as light extraction functionals for organic light-emitting diode applications [J]. Org. Electron., 2014, 15(1): 196-202. doi: 10.1016/j.orgel.2013.11.007http://dx.doi.org/10.1016/j.orgel.2013.11.007
JEON S, LEE S, HAN K H, et al. High-quality white OLEDs with comparable efficiencies to LEDs [J]. Adv. Opt. Mater., 2018, 6(8): 1701349-1-8. doi: 10.1002/adom.201701349http://dx.doi.org/10.1002/adom.201701349
BOCKSROCKER T, PREINFALK J B, ASCHE-TAUSCHER J, et al. White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and lambertian emission [J]. Opt. Express, 2012, 20(S6): A932-A940. doi: 10.1364/oe.20.00a932http://dx.doi.org/10.1364/oe.20.00a932
QU Y, SLOOTSKY M, FORREST S R. Enhanced light extraction from organic light-emitting devices using a sub-anode grid [J]. Nat. Photonics, 2015, 9(11): 758-763. doi: 10.1038/nphoton.2015.194http://dx.doi.org/10.1038/nphoton.2015.194
SUN Y R, FORREST S R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids [J]. Nat. Photonics, 2008, 2(8): 483-487. doi: 10.1038/nphoton.2008.132http://dx.doi.org/10.1038/nphoton.2008.132
JEON S, JEON J H, SONG Y S, et al. Vacuum nano-hole array embedded organic light emitting diodes [J]. Nanoscale, 2014, 6(5): 2642-2648. doi: 10.1039/c3nr05331hhttp://dx.doi.org/10.1039/c3nr05331h
洪德铭, 陈桂雄, 王文雯, 等. 基于等离子体处理的微纳复合结构制备及其OLED光提取性能研究 [J]. 光子学报, 2022, 51(5): 0551316-1-9.
HONG D M, CHEN G X, WANG W W, et al. Fabrication of hybrid micro-nano structures based on plasma treatment and its light extraction performances for OLED [J]. Acta Photon. Sinica, 2022, 51(5): 0551316-1-9. (in Chinese)
卢小香, 王勇, 韩晓媚, 等. 纳米图形增强OLED出光效率研究 [J]. 激光与光电子学进展, 2018, 55(2): 022301-1-6. doi: 10.3788/lop55.022301http://dx.doi.org/10.3788/lop55.022301
LU X X, WANG Y, HAN X M, et al. Study on light extraction efficiency of enhanced OLED with nanopatterns [J]. Laser Optoelectron. Prog., 2018, 55(2): 022301-1-6. (in Chinese). doi: 10.3788/lop55.022301http://dx.doi.org/10.3788/lop55.022301
朱永昶, 王帅, 石超君, 等. 微纳光栅结构提高OLED器件性能的研究 [J]. 光电子·激光, 2022, 33(5): 471-478.
ZHU Y C, WANG S, SHI C J, et al. Micro/nano grating structures for improving the performance of organic light emitting diode [J]. J. Optoelectron.·Laser, 2022, 33(5): 471-478. (in Chinese)
CHEN C Y, LEE W K, CHEN Y J, et al. Enhancing optical out-coupling of organic light-emitting devices with nanostructured composite electrodes consisting of indium tin oxide nanomesh and conducting polymer [J]. Adv. Mater., 2015, 27(33): 4883-4888. doi: 10.1002/adma.201502516http://dx.doi.org/10.1002/adma.201502516
ZHOU J G, HUA X C, CHEN Y K, et al. Nano-modified indium tin oxide incorporated with ideal microlens array for light extraction of OLED [J]. J. Mater. Chem. C, 2019, 7(13): 3958-3964. doi: 10.1039/c9tc00195fhttp://dx.doi.org/10.1039/c9tc00195f
OU Q D, ZHOU L, LI Y Q, et al. Extremely efficient white organic light-emitting diodes for general lighting [J]. Adv. Funct. Mater., 2014, 24(46): 7249-7256. doi: 10.1002/adfm.201402026http://dx.doi.org/10.1002/adfm.201402026
LIANG H W, HSU H C, WU J N, et al. Corrugated organic light-emitting diodes to effectively extract internal modes [J]. Opt. Express, 2019, 27(8): A372-A384. doi: 10.1364/oe.27.00a372http://dx.doi.org/10.1364/oe.27.00a372
ZHANG Z K, XIA L L, LIU L Z, et al. Ultra-smooth and robust graphene-based hybrid anode for high-performance flexible organic light-emitting diodes [J]. J. Mater. Chem. C, 2021, 9(6): 2106-2114. doi: 10.1039/d0tc05213bhttp://dx.doi.org/10.1039/d0tc05213b
BAE S K, CHOO D C, KANG H S, et al. Transparent ultra-thin silver electrodes formed via a maskless evaporation process for applications in flexible organic light-emitting devices [J]. Nano Energy, 2020, 71: 104649. doi: 10.1016/j.nanoen.2020.104649http://dx.doi.org/10.1016/j.nanoen.2020.104649
JEONG C Y, PARK Y B, GUO L J. Tackling light trapping in organic light-emitting diodes by complete elimination of waveguide modes [J]. Sci. Adv., 2021, 7(26): 0355-1-10. doi: 10.1126/sciadv.abg0355http://dx.doi.org/10.1126/sciadv.abg0355
LI Y G, TANG Z, HÄNISCH C, et al. Ultrathin MoO3 layers in composite metal electrodes: improved optics allow highly efficient organic light-emitting diodes [J]. Adv. Opt. Mater., 2019, 7(3): 1801262-1-8. doi: 10.1002/adom.201801262http://dx.doi.org/10.1002/adom.201801262
KIM K H, LEE S, MOON C K, et al. Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes [J]. Nat. Commun., 2013, 5(1): 4769-1-8. doi: 10.1038/ncomms5769http://dx.doi.org/10.1038/ncomms5769
KIM S Y, JEONG W I, MAYR C, et al. Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter [J]. Adv. Funct. Mater., 2013, 23(31): 3896-3900. doi: 10.1002/adfm.201300104http://dx.doi.org/10.1002/adfm.201300104
KIM K H, MOON C K, LEE J H, et al. Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments [J]. Adv. Mater., 2014, 26(23): 3844-3847. doi: 10.1002/adma.201305733http://dx.doi.org/10.1002/adma.201305733
KIM K H, AHN E S, HUH J S, et al. Design of heteroleptic Ir complexes with horizontal emitting dipoles for highly efficient organic light-emitting diodes with an external quantum efficiency of 38% [J]. Chem. Mater., 2016, 28(20): 7505-7510. doi: 10.1021/acs.chemmater.6b03428http://dx.doi.org/10.1021/acs.chemmater.6b03428
WANG J Y, LI N Q, CHEN Q D, et al. Triarylboron-cored multi-donors TADF emitter with high horizontal dipole orientation ratio achieving high performance OLEDs with near 39% external quantum efficiency and small efficiency roll-off [J]. Chem. Eng. J., 2022, 450: 137805. doi: 10.1016/j.cej.2022.137805http://dx.doi.org/10.1016/j.cej.2022.137805
0
浏览量
568
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构